An Adaptive Medium Access Parameter Prediction Scheme for IEEE 802.11 Real-Time Applications


Multimedia communications have experienced an unprecedented growth due mainly to the increase in the content quality and the emergence of smart devices. The demand for these contents is tending towards wireless technologies. However, these transmissions are quite sensitive to network delays. Therefore, ensuring an optimum QoS level becomes of great importance. The IEEE 802.11e amendment was released to address the lack of QoS capabilities in the original IEEE 802.11 standard. Accordingly, the Enhanced Distributed Channel Access (EDCA) function was introduced, allowing it to differentiate traffic streams through a group of Medium Access Control (MAC) parameters. Although EDCA recommends a default configuration for these parameters, it has been proved that it is not optimum in many scenarios. In this work a dynamic prediction scheme for these parameters is presented. This approach ensures an appropriate traffic differentiation while maintaining compatibility with the stations without QoS support. As the APs are the only devices that use this algorithm, no changes are required to current network cards. The results show improvements in both voice and video transmissions, as well as in the QoS level of the network that the proposal achieves with regard to EDCA.

Wireless Communications and Mobile Computing