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Multimedia communications have experienced an unprecedented growth due mainly to the increase in the content quality and the
emergence of smart devices.The demand for these contents is tending towards wireless technologies. However, these transmissions
are quite sensitive to network delays. Therefore, ensuring an optimum QoS level becomes of great importance. The IEEE 802.11e
amendment was released to address the lack of QoS capabilities in the original IEEE 802.11 standard. Accordingly, the Enhanced
DistributedChannel Access (EDCA) functionwas introduced, allowing it to differentiate traffic streams through a group ofMedium
Access Control (MAC) parameters. Although EDCA recommends a default configuration for these parameters, it has been proved
that it is not optimum inmany scenarios. In this work a dynamic prediction scheme for these parameters is presented.This approach
ensures an appropriate traffic differentiation while maintaining compatibility with the stations without QoS support. As the APs
are the only devices that use this algorithm, no changes are required to current network cards. The results show improvements in
both voice and video transmissions, as well as in the QoS level of the network that the proposal achieves with regard to EDCA.

1. Introduction

Wireless technologies have experienced a marked increase
in popularity over the past few years. As a result, the trend
towards the use of wireless networks has been noticeable,
and nowadays it is possible to find them in many different
scenarios such as hospitals, airports, and universities. Due
to their simplicity of deployment, low cost, and multimedia
content support, IEEE 802.11 [1] networks have become
essential and have reached a leading position in the market.

Access mode to the Internet and consumption patterns
are also changing, especially those related to multimedia
applications. In fact, the development of new video coding
standards has led to an enhancement in the quality of the
contents and a growth in the number ofHighDefinition (HD)
video streaming services. However, this improvement results
in an increase in the volume of data that must be transmitted
over the network. This new trend comes from the emergence
of intelligent devices such as smartphones, tablets, and new

generation game consoles. All these devices share a common
feature, namely, being equipped with IEEE 802.11 interfaces.

Real-time applications have highQuality of Service (QoS)
requirements, which are not provided by the original IEEE
802.11 standard. This drawback leads to developing the IEEE
802.11e amendment [2], where the QoS level is improved by
introducing EDCA (Enhanced Distributed Channel Access)
as a medium access function. EDCA is able to classify and
prioritize the traffic by defining a group of medium access
parameters. Nevertheless, some research proves that there are
still some limitations in the QoS field that must be overcome,
particularly with respect to voice and video transmissions.

In addition to stations with QoS support, IEEE 802.11e
networks can be also composed of legacy stations. Legacy
stations do not offer QoS capabilities and cannot make
modifications to themedium access parameters. Accordingly,
and with the aim of maintaining the interoperability between
both types of stations, EDCA recommends the use of a group
of values for these parameters. In spite of improving the
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performance of real-time applications, these values are not
optimum for voice and video communications in a huge
number of scenarios. For that reason, making an appropriate
adjustment to these parameters becomes a key issue.

Artificial Intelligence (AI) techniques are developed to
solve complex problems that usually require human reason-
ing. In this context, the use of such methods may be useful
given the diverse conditions that can be found in a wireless
network. In particular, the number of collisions of the net-
work is one of the factors that determines the network status
in a more significant way. Therefore, the application of AI
techniques could make it possible to find traffic patterns and
contribute to enhancing the QoS level and the performance
of the network.

In this paper, we introduce a dynamic prediction scheme
for the medium access parameters in EDCA to improve the
QoS level over IEEE 802.11 WLANs. The suitable selection of
the waiting time periods for every Access Category (AC) to
access the channel leads to a reduction in the collisions in
the network, mainly between voice and video frames. This
strategy achieves, therefore, a double objective: on the one
hand, the quality of the multimedia communications is con-
siderably enhanced; on the other hand, it allows for a channel
usage optimization. The major contribution of this paper is
the capacity to adapt the EDCA configuration dynamically
based on the traffic conditions by using a group of simple
rules at the Access Point (AP). Thus, it only requires a few
small modifications to the AP firmware, maintaining full
compatibility with current commercial network cards.

The remainder of this paper is organized as follows.
Section 2 reviews the IEEE 802.11e amendment and some
proposals that aim to enhance the QoS level. Section 3 gives
a summary of the Artificial Intelligence techniques used in
this research. In Section 4 we introduce the proposed scheme
and the most relevant design aspects, while in Section 5 the
details of the implementation process are presented. Section 6
describes the final dynamic predictive model. As this pro-
posal has been designed as an incremental process, the results
of the performance evaluation and a comparison with EDCA
are also discussed in this section. Finally, Section 7 provides
some concluding remarks on our work.

2. QoS in IEEE 802.11 Networks

Theoriginal IEEE 802.11 standard introduces two functions to
access the wireless medium, which cannot provide QoS capa-
bilities. These functions are called Distributed Coordination
Function (DCF) andPointCoordination Function (PCF). For
this reason, the IEEE 802.11e amendment was developed.

2.1. IEEE 802.11e. The IEEE 802.11e amendment was released
with the aim of providing QoS support to voice and video
applications over IEEE 802.11 WLANs [2]. Actually, the main
feature of this amendment is the capacity to differentiate
traffic flows and services. As backward compatibility must be
kept, a distinction is drawn between the stations that support
QoS (QSTAs) and the stations that use DCF and do not offer
such support (nQSTAs). For this purpose, the 802.11e amend-
ment implements the Hybrid Coordination Function (HCF).

Table 1: Default EDCA parameter set for IEEE 802.11g PHY layer.

AC CWmin CWmax AIFSN TXOP
AC BK aCWmin aCWmax 7 —
AC BE aCWmin aCWmax 3 —
AC VI (aCWmin + 1)/2 − 1 aCWmin 2 3.008ms
AC VO (aCWmin + 1)/4 − 1 (aCWmin + 1)/2 − 1 2 1.504ms

This function is composed of two channel access methods:
HCF Controlled Channel Access (HCCA) and EDCA. As
was the case with PCF, the first of them follows a centralized
scheme to access the medium, while the second one works in
a distributed way, as DCF does. To this end, the HCF imple-
mentation is mandatory for all the QSTAs. Nevertheless, only
EDCA is supported by commercial network cards on current
devices as a method for accessing the wireless medium.

EDCA improves the capabilities ofDCF anddistinguishes
between eight User Priorities (UPs). Moreover, four ACs are
defined, which are derived from the UPs and are in charge
of classifying the traffic streams. In this way, in order to from
highest to lowest priority, Voice (VO), Video (VI), Best Effort
(BE), and Background (BK) Access Categories are consid-
ered, as sketched in Figure 1. Each ACworks on its own trans-
mission queue and is characterized by an EDCA parameter
set.TheEDCAparameter set specifies a priority level through
an Arbitration Interframe Spacing Number (AIFSN) com-
bination, a Transmission Opportunity interval (TXOP), and
the duration of the Contention Window (CW). In order to
provide a fair transmission for the DCF stations, the IEEE
802.11e amendment defines a standard combination of the
medium access parameters, as shown in Table 1.

The Arbitration Interframe Spacing (AIFS) period deter-
mines the amount of time that a station must wait before
beginning a new transmission. This is derived from the AIFS
Number (AIFSN) value for each AC, as can be seen in (1)
where the SlotTime denotes the duration of a slot according
to the physical layer, and the Short Interframe Space (SIFS)
refers to the amount of time used by high priority actions that
require an immediate response.

AIFS[AC] = AIFSN[AC] ⋅ SlotTime + SIFS. (1)

The CW size sets the length of idle time; after that a
transmission of a given station may occur. The CW values
are assigned in the inverse order to that of the priority of the
corresponding AC. Whenever an unsuccessful transmission
takes place, the CW follows an increment sequence in powers
of two minus one. In this way, the size of CW could be
increased until it reaches at most the value of CWmax. It must
keep this value until a frame is successfully transmitted, CW
being reset to CWmin. This algorithm is not exactly the same
as that used by DCF stations [3]. In this case, whenever the
medium is sensed busy after an AIFSN period, the counter
previously mentioned is decreased by one time slot. Due to
this change, the use of an AIFSN value of 3 time units by the
BE traffic provides a similar priority to that offered to theDCF
traffic. Likewise, TXOPs allows the transmission of multiple
streams without gaining the medium access every time that a
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8 UPs are mapped into 4 ACs

AC_BK AC_BE AC_VI AC_VO

AIFS [AC_BK]

CWmin [AC_BK]

CWmax [AC_BK]

AIFS [AC_BE]

CWmin [AC_BE]

CWmax [AC_BE]

AIFS [AC_VI]

CWmin [AC_VI]

CWmax [AC_VI]

AIFS [AC_VO]

CWmin [AC_VO]

CWmax [AC_VO]

Scheduler: upon parallel access to the wireless medium at the same time lost,
the AC with highest priority transmits

Transmission attempt

Figure 1: EDCA Access Categories mapping.

frame is transmitted.Therefore, they are usually used in real-
time applications.

The AP of the network sends the EDCA parameter set
through beacon frames to the stations of a Basic Service Set
(BSS).The IEEE 802.11e amendment allows theAPs tomodify
the values for this parameter set. However, no mechanism is
considered in this amendment for carrying out this task and
most commercial devices do not implement it.

2.2. Dynamic Adaptation in IEEE 802.11e. Wireless networks
are conditioned by a huge set of factors that can change over
time. For instance, the QoS level provided for all the services
becomes worse as the congestion of the network and the
number of collisions increase. In this regard, the usage of
optimum values for the MAC parameters gains importance
when trying to access the wireless medium in amore efficient
way. In view of the above, several proposals have appeared
with the aim of overcoming the QoS limitations that exist
in IEEE 802.11 networks. They could be classified into three
different categories: solutions designed at the link layer
related to the medium access parameters, schemes designed
at other layers such as the application level, andmathematical
theories and formal models.

Recently, adapting the medium access parameters has
taken increased importance. Depending on the selected
values, the channel access can be more efficient, this being
reflected in a significant reduction in the collisions and an
increase in the QoS level. This aspect is of particular interest
in the case of multimedia traffic transmitted in real-time
due to their inherent temporal restrictions. This aspect has
been studied in [4], in which it is shown the notable effect
that using adequate priority parameters has on the network
performance. After an analysis of these parameters using

different priorities, it is shown that only the CWand the AIFS
are associated with improvements, while the TXOP has no
effect in the studied scenarios.

In this context, other authors have also examined this
issue from a different point of view. In [5] a set of scenarios is
presented in which several values for the AIFSN and CW are
taken into account.Through this analysis, it is proved that the
appropriate selection of the AIFSN combination contributes
to reducing the collisions among the traffic of different ACs.
Furthermore, the adequate tuning of the CW also leads to an
enhancement of theQoS level.This conclusion is also reached
in [6], where it is pointed out that a decrease in both the
collisions and access media delay leads to an improvement
in the efficiency of the network.

In [7] an adaptation scheme for the duration of CW is
introduced, achieving better results than EDCA. However,
compatibility with legacy DCF stations is not considered. To
address this issue, another proposal presents a new way of
offering backward compatibility with the DCF stations [8].
This algorithm prioritizes the voice and video traffic streams
over the others. As the priority of the DCF stations cannot be
modified by updating the EDCAparameter set, theCWsize is
increased by retransmitting packets that are properly received
by the DCF stations. In this way, the priority of the stations
that use EDCA decreases. Nevertheless, unnecessary traffic is
introduced into the network. The tuning of CW is also taken
into account in [9] for collision avoidance, outperforming the
results of EDCA in terms of medium access delay.

An approach with this same goal is presented in [10],
where three possible load levels are considered.This proposal
achieves a reduction in the number of retransmissions and
an enhancement in network performance. However, there
is a drop in the voice and video traffic transmitted, which
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impairs its temporal restrictions. With the same aim, the
approach proposed in [11] is based on the reservation and
scheduling of multiple TXOPs, reducing in this way the
number of collisions in the network. Nevertheless, using
several consecutive TXOPs may penalize the remaining real-
time applications, since they cannot access the channel for a
certain amount of time.

Some other authors model their own medium access
functions on the sidelines of EDCA or DCF. However, this
type of models is usually incompatible with the operation
mode of IEEE 802.11. In [12] a new function that combines
the features of both DCF and EDCA functions is proposed.
Indeed, it establishes a protocol that is able to determine the
next transmitter according to a probability that depends on
the priority of the traffic. Nevertheless, this approach cannot
maintain interoperability with the current network cards.

Other approaches focus on ensuring an optimum level
of QoS by carrying out any kind of optimization over other
network layers. In [13] a middleware at the application level
to improve the multimedia traffic performance is introduced.
In particular, the main goal of this scheme is to maximize
the provisioning quality to wireless clients in case of anomaly
conditions in the network. Another scheme at this same
level is proposed in [14]. iPAS is presented as a new way
to adapt the priority of multimedia frames to establish an
adequate bandwidth according to a group of QoS-related
parameters. The architecture of this approach is composed
of two main blocks: the iPAS server and the iPAS client. The
iPAS client collects information about stream preferences,
which is sent as feedback to the iPAS server. Then, based
on these data, the iPAS server is responsible for managing
bandwidth resources bymeans of a stereotype-based resource
allocation mechanism and a bandwidth estimation scheme.

The design of an analytical model to improve network
performance has also been considered. Nevertheless, most of
these models make assumptions that may not be fulfilled in
real transmissions. In [15] a model using Markov chains is
defined. However, the same bit rate is considered for all the
stations. By contrast, this issue is addressed by means of a
bandwidth control scheme in [16]. In a similar way, themath-
ematical model presented in [17] is only tested under network
saturation conditions. Finally, authors in [18] evaluate the
model under an ideal channel scenario.

Although they are less common, besides Markovian
models, 𝑝-persistent models have also been used. In [19] a
time-domain analysis has been carried out in order to check
the CSMA/CA performance and model the EDCA behavior
from a different point of view. In spite of being properly
validated via simulations, it is assumed that no transmission
errors occur in the channel during the transmissions and all
the stations always have a packet to send.

Althoughmost of the described proposals outperform the
results achieved by EDCA, it is not possible for all of them to
maintain interoperability with legacy DCF stations. Actually,
in many cases, these models experience compatibility prob-
lems with the IEEE 802.11 standard or introduce additional
control traffic overhead in the network. In particular, despite
this subject having been widely discussed, there are no other

works that make use of Artificial Intelligence techniques to
adapt the medium access parameters of EDCA.

3. Supervised Learning

Supervised learning refers to the task of defining a model,
ℎ
Θ
(𝑥), from supervised training data. The information rel-

ative to objects in this data is represented by a set of 𝑛
input features, 𝑋 = (𝑋

1
, . . . , 𝑋

𝑛
), and an output variable,

𝑌. In supervised learning, data is defined as a pair, (𝑋, 𝑌),
whose current outputs are already known (that is why it is
called supervised). The process is in charge of analyzing the
training data andusing them to induce amodel able to predict
other unlabelled data (𝑦) when only the values of their input
features (𝑥) are known.

The learning process may be of a different nature. In
classification problems, the goal is to determine the class
of an instance which is unknown (𝑌 ∈ {𝑐

1
, . . . , 𝑐

𝐾
}). These

models can be represented in several ways such as decision
trees or classification rules. Regression analysis refers to a
statistical methodology used in cases of numeric prediction.
It is expected to identify distribution patterns in the current
data, obtaining 𝑌 ∈ R, and therefore ℎ

Θ
(𝑥) ∈ R.

In this work, both types of supervised learning described
above are utilized. 𝑋 represents the parameter configuration
used for managing the voice and video traffic in a network,
whereas the output 𝑌 represents the throughput achieved by
this setting. More specifically, in the case of the regression
model, ℎ

Θ
(𝑥) ∈ R returns the predicted throughput of

the network, 𝑦, given the parameter configuration 𝑥. By
contrast, using the same configuration 𝑥, the classification
model provides a label 𝑌 for such an instance.

There are a large number of supervised learning mod-
els for regression, such as Linear Regression [20], Neural
Networks [21], Support Vector Machines [22], or Regression
Trees [23]. Selecting a certain model depends mainly on the
aim of the application. Some of them are more powerful than
others; in other words, they achieve greater precision and
can detect more relevant patterns in data. However, the ease
with which they can be interpreted can be an issue in some
scenarios. Models such as Neural Networks are considered
Black Boxmodels due to the fact that the information related
to underlying patterns in data cannot be extracted from them.
In contrast, Regression Trees can be easily interpreted and
provide useful information regarding the relation between
input and output features. Another important issue concerns
computational complexity. For instance, obtaining 𝑦 from 𝑥
with a Neural Network implies some matrix multiplications
and can be too slow in some settings. However, processing
a regression tree might only require a few comparisons. This
becomes particularly important when using these models in
real-time applications.

Due to the application domain of thiswork, it is important
to select models that can quickly obtain the required result.
The models must be used in real-time to determine the
parameter setting that achieves a higher throughput. It is
also important that the obtained models can be interpreted,
analyzed, and evenmodified after having been learned. In the
context of this work, a J48 classifier tree and aM5 regression
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model have been selected. They are further described in the
sections below.

3.1. J48 Classifier Tree. The J48 classifier tree is based on the
C4.5 algorithm, which is the successor to the ID3 algorithm
[24]. This tree can be found in the weka package for machine
learning [25]. This model aims to design a decision tree that
is as short as possible. The algorithm follows a recursive
procedure by means of a heuristic greedy search to obtain the
final model. In this way, it selects every attribute according
to its gain ratio (see (2)). This guideline expressly refers to
the information gain obtained as a result of the classification
made and the entropy of the predictive variable,𝑋

𝑖
.

Gain ratio =
𝐼 (𝐶,𝑋

𝑖
)

𝐻 (𝑋
𝑖
)
=
𝐻 (𝐶) − 𝐻 (𝐶/𝑋𝑖)

𝐻 (𝑋
𝑖
)
. (2)

The information gain is given by the expression 𝐼(𝐶,𝑋
𝑖
),

which obtains themutual information between𝑋
𝑖
and𝐶; that

is, the algorithm evaluates the potential uncertainty when
classifying an attribute 𝑋

𝑖
on a set 𝐶. This is calculated as

the difference between the entropy of the different outputs
of the set 𝐶, 𝐻(𝐶), and the entropy obtained after using
a certain attribute 𝑋

𝑖
, 𝐻(𝐶,𝑋

𝑖
). In order to prevent the

variables with a wider range of possible values from being the
biggest beneficiaries in the classification, the information gain
is weightedwith the entropy of the predictive variable,𝐻(𝑋

𝑖
).

The algorithm divides the training set into several subsets
that are as pure as possible until a leaf node is reached. In
this respect, the following internal node to be selected is
the attribute whichmaximizes the aforementioned gain ratio.
Once the tree has beenmodeled, this algorithm also incorpo-
rates a pruning technique to reduce its size and complexity.
In the context of this work, an example of a subtree of the J48
classifier designed can be observed in Figure 2. In this way,
it is possible to calculate the label for a certain combination
which is situated at the leaf nodes. This label is obtained by
using the rest of the parameters as an entry point for the tree.

3.2. M5Rules. The M5 algorithm [23] represents ℎ
Θ
(𝑥) ∈ R

as a regression tree and is very similar to its counterpart,
c4.5 [24], which is used for classification problems. This tree
represents a division of the input space and each node defines
a condition over some input attribute 𝑋

𝑖
. For instance, a

node defined by the condition [VI channel occupancy <=
0.341] represents the branch which would be used to proc-
ess all objects whose value for variable VI channel occu-
pancy is smaller than 0.341. Meanwhile, the other branch
would be used to process the remaining cases. Each leaf
represents an input subspace and corresponds to the cases
which fit the conditions represented by the path from the root
of the tree to the leaf.

In M5, there are two possibilities to obtain the output
values for the cases falling into a leaf of the tree. The first
one, namely, regression tree, uses themean output value of the
training data falling into that leaf as default prediction. The
second one, namely, model tree, learns a multivariate Linear
Regression equation from the training data corresponding to
the leaf and uses it to predict the output values.

VI
occup.

DCF
occup.

VI
occup.

Comb. 1 GB
occup.

VO
occup.

DCF
occup.

VO
occup.

Comb. 3 Comb. 1 Comb. 7

>30% ≤30%

>15%

>57%

≤15%

≤57% >11% ≤11%

>22% ≤22%

Figure 2: Example of subtree obtained by the J48 classifier tree.

Rule: 1
IF

VI channel occupancy <= 0.341
THEN
max th[0] =
−0.0449 ∗ global channel occupancy
+ 0.0701 ∗ DCF channel occupancy
+ 0.1152 ∗ BE channel occupancy
− 0.0392 ∗ VI channel occupancy
− 0.279 ∗ VO channel occupancy
+ 2.0059 [151/2.844\%]

Algorithm 1: Example of rule induced byM5Rules.

The algorithmM5Rules is also included in theweka pack-
age. It first learns a regression (or model) tree from training
data by means of the implementation of M5 included in this
package, namely,M5P, and then extracts a set of rules. Algo-
rithm 1 shows an example of the rules obtained. So that the
value of all objects for variable [VI channel occupancy <=
0.341]; the output value is obtained as a linear expression
from the remaining (5) variables. The information [151/
2.844\%] indicates that 151 objects of the training dataset
fall into that leaf and that the relative error obtained for those
objects is 2.844%.

4. MAC Parameter Tuning Design

In recent times, the number of applications with high
QoS level requirements has increased as a result of the
improvement in the quality of the multimedia contents.
Consequently, traffic patterns in wireless networks have also
changed significantly.
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Voice and video traffic transmitted in real-time is espe-
cially sensitive to latency and packet losses.Therefore, it must
be given an even higher priority. The IEEE 802.11e amend-
ment and the introduction of EDCA allow the definition of
medium access parameters for each traffic type. However, due
to the complexity involved in determining the traffic condi-
tions at everymoment, this amendment uses a default combi-
nation for these parameters instead of providing amechanism
for their adaptation. Moreover, the aforementioned param-
eters cannot be tuned in the case of legacy DCF stations.
For this reason, compatibility with these stations becomes an
important issue.

This paper presents a dynamic tuning scheme for the
medium access parameters in EDCA to enhance QoS dif-
ferentiation, targeted for real-time applications. The priority
assigned to each AC is variable and depends on the traffic
conditions. These priority levels are calculated by employing
Artificial Intelligence techniques which consider both traffic
flow patterns and network status. Furthermore, the scheme
is fully compatible with EDCA, not being necessary to make
changes to current network cards. Moreover, it seeks to
ensure backward interoperability between the stations that
use EDCA and those that use DCF.

4.1. Design Considerations. In order to optimize the perfor-
mance of EDCA, it has been demonstrated that the AIFSN
and the CW parameters are the most relevant factors [4–
6]. Accordingly, the proposal focuses on determining the
most suitable values for these parameters and adjusting them
dynamically over time. In this way, it is possible to provide
a more efficient mechanism to access the wireless medium.
This improvement, in turn, allows it to reduce the collisions
among the streams of both different and the same ACs. This
leads to an enhancement in the QoS level, mainly for the
voice and video traffic, due to its particular requirements for
transmission in real-time.

Our scheme aims to improve the performance of real-
time applications inWi–Fi networks by reducing the number
of collisions. One of the most serious difficulties in EDCA
is precisely the huge amount of collisions that take place
between voice and video transmissions, which are usually
caused because they use the same AIFSN value and a very
short length for the CWmin and CWmax parameters. In this
context, a reduction of the number of collisions can be
addressed in two ways: (i) increasing the separation between
the AIFSN values for the voice and video applications and (ii)
rising the length for the CWmin and CWmax parameters.

From the point of view of the AIFSN combination, the
increase of the values must be performed on the video AC
given that voice transmissions have stricter time constraints.
The usage of AIFSN values higher than 2 slots for the video
AC allows the voice applications to be provided with longer
exclusive time periods to access the channel. Accordingly,
collisions between voice and video frames would be reduced.
Moreover, when voice packets collide and must be retrans-
mitted, they could be long delayed or even discarded because
of reaching the maximum deadline. As a consequence, the
user experience would be highly damaged. On the other

hand, if the AIFSN value for the video AC is increased, the
values for the BE and BK ACs must be accordingly increased
in an equal or greater proportion in order not to impair
the video transmissions. However, if the network is partially
composed of stations that use the original IEEE 802.11 stan-
dard (i.e., they use the DCF function), these legacy stations
would have a higher priority to access the channel than the
video applications, hence resulting in a noticeable decrease
in the QoS performance.

Regarding the CW size, an increase of this parameter
would directly lead to a reduction in the number of collisions
in the network with respect to EDCA. This matter takes on
particular importance for the voice and video traffic due to
the short values defined for these ACs in EDCA. However, a
significant enlargement of CW size would involve an increase
in the waiting time to access the wireless medium. As a
result, the real-time applications would be the most affected
by this modification and the legacy stations would acquire
even greater priority.

As can be seen, transmissions in wireless networks can be
determined by several factors. For this reason, the complexity
involved in determining the network conditions and tuning
the medium access parameters according to them is consid-
erably high. To perform this task, the most relevant factors
are described below.

(i) Number of Active Applications of Each Type of Traffic.
This parameter can be identified in a simple way by the
AP. However, this is insufficient at a particular moment
because it cannot provide further information about the
current conditions of the network: that is, the scheme will
not be allowed to obtain real information about the current
occupancy of the wireless channel.

(ii) Application Bit Rate. Linked to the previous one, this
factor provides more detailed information about the wireless
medium status. Unfortunately, it is difficult to calculate in
real-time. To identify these values it is necessary to introduce
periodic control traffic in the network. Nevertheless, this
feature is not typically used in IEEE 802.11e.

(iii) Transmission Rate. Each station may carry out its trans-
missions by using a different transmission rate.Therefore, the
specific period of time that each of them keeps the channel
busy is different. This parameter would be a good way of
estimating the network conditions. Nonetheless, this value
needs to be used jointly with the above factors.

(iv) Presence or Absence of Legacy DCF Stations.The existence
of DCF applications restricts the use of priority parameters
in EDCA, given that these values cannot be duly adjusted for
these stations.

(v) Occupancy Level of the Wireless Medium. The amount of
time that each traffic type keeps the medium busy allows us
to obtain a good approximation of the network conditions.
Indeed, the approximation that this only parameter can
provide in a simple way is similar to that obtained by taking
together all the previously described factors.
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Step 1:
AIFSN tuning

J48 classifier
tree

M5 regression
model

Step 2:
CW tuning

Step 3: dynamic
EDCA tuning scheme

Figure 3: Dynamic EDCA prediction scheme’s phases.

The proposed method requires to be used in real-time
contexts without degrading the network performance, so the
model should not be computationally complex. In this way,
the medium access configuration can be recalculated at short
intervals to achieve more accurate results. In this regard, AI
techniques may be useful in identifying traffic patterns and
determining optimum priority values for each AC. Further-
more, these techniques make it possible to simplify the huge
amount of information that is involved in determining the
network conditions. In this way, it is possible to handle only
the information which plays a critical role in ascertaining the
channel status.

4.2. Proposal Description. Given the presented constraints,
our scheme takes into account the considerations described
above. Firstly, the algorithm selects the optimum AIFSN
combination depending on the current channel conditions.
After that, and based on these values, the scheme calculates
accordingly the most appropriate size for the CW parameter.

To ensure a better QoS differentiation, this proposal is
divided into three phases, as depicted in Figure 3. The first
phase involves the adaptation of the AIFSN combination
through the design of two independent predictive models: an
M5 regression model and a J48 classifier tree. To design these
models, a deep training stepmust be performed.This training
must consider a wide range of network situations to ensure
that the models are built as close as possible to real environ-
ments. The prediction obtained from these models is used in
the second phase, when the optimization of the CW size is
carried out. In the third phase, all the designed models are
unified into a single schemewhich is able to discern the use of
every one of them according to the network conditions. The
appropriate selection of these priority valuesmakes it possible
to reduce both the internal and external collisions.This result
is especially suitable for the multimedia traffic enhancement.
Moreover, the usage of the wireless channel is optimized and,
as a consequence, the network performance is also improved.
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Figure 4: MAC parameters update process.

The proposed scheme is loaded in the APs of the network
by introducing a few modifications in the firmware. In this
regard, the predictive models, which are already trained
and built, are ready to be used at any time. Therefore, it
ensures the direct application on real environments, where
the information about the network conditions is only used
as input for the predictive scheme to obtain and update the
appropriate EDCA values.

Traffic conditions may change rapidly, so the periodic
update of the priority parameters becomes an important
matter to consider. After evaluating different amounts of
time, this recalculation period has been set to one second.
Within the selected time, the AP of the network must
determine the optimum priority values of that very moment
and check whether they are equal to the current ones. If any
difference is found, the APmust notify these new parameters
to the stations. Once the optimum EDCA combination has
been found, the updated information is embedded in an
EDCA parameter set and transmitted via beacon frames. In
this way, it avoids introducing additional control traffic into
the network.The process described above can be observed in
Figure 4.

The beacon interval is usually set to 100ms; therefore,
if required, the values could be updated at every interval.
However, channel conditions do not usually suffer relevant
changes in such a short period and it would only cause abrupt
modifications in the parameters that would not allow the
algorithm to converge properly. The tests performed to set
this period showed that the results were similar for updating
periods from 1 to 5 seconds, these being less accurate when
selecting a longer interval due to the excessive amount of
time without updating the network information. Given the
similarity among the previous periods, the final selection
of a one-second interval was also due to the intention of
implementing a scheme as appropriate for real environments
as possible, where noises ormovementsmay change suddenly
the channel status.
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Table 2: Features of the dynamic adaptation schemes.

IEEE 802.11
compatibility

Additional
traffic Efficiency Prioritization

QoS
performance
with DCF and
EDCA stations

Designed for
saturated traffic Main issues

Our proposal Yes No Efficient AIFSN + CW Higher than
EDCA No —

i-EDCA [7] Yes No Efficient CW Lower than
EDCA No

Bad result in the
presence of DCF
stations. Only uses

CW

DACKS [8] Yes No Very inefficient CW Higher than
EDCA No

Very inefficient.
Retransmits correct

packets

AEDCA [9] Yes No Efficient CW Lower than
EDCA No

Bad results in the
presence of DCF
stations. Only uses

CW

MMDP-
FMAC
[10]

Yes No Efficient Fair allocation Lower than
EDCA No

Bad results in the
presence of DCF
stations. Problems
with the deadline of

the real-time
applications

Hamidian and
Körner [11] Yes No Efficient TXOP Similar to

EDCA No
Problems with the
deadline of the

real-time applications

QHDCF [12] No Yes Efficient Centralized
priority

Higher than
EDCA No

Incompatible with the
standard. Uses

modified packets

iPAS [14] No Yes Inefficient Centralized
priority

Lower than
EDCA No

Incompatible with the
standard. Requires
stations changes.

Introduces additional
control traffic

Banchs and
Vollero [17] Yes No Efficient CW Lower than

EDCA Yes

Bad results in the
presence of DCF
stations. Only uses

CW.

Table 2 compares the main features of our scheme with
those described in Section 2.2. The Table shows that some
proposals have compatibility issues with the IEEE 802.11
standard. Therefore, these schemes cannot be used in real-
world scenarios. On the one hand, there is a set of approaches
that do not consider the large number of wireless cards
whose features are still based on the original IEEE 802.11.
These schemes (i-EDCA,AEDCA,MMDP-FMAC, iPAS, and
Banchs et al.) achieve very poor results in the presence of
stations that use DCF. In other words, the QoS performance
achieved by these approaches is lower than the one offered
by EDCA. This problem arises from the modification of the
channel access function in order to improve the performance
of the voice and video applications. For that reason, the usage
of these schemeswhen the network is also composed of legacy
DCF stations involves an increase in the priority of these last
stations with regard to the video applications.

On the other hand,most of the evaluated schemes achieve
good results in terms of efficiency since they do not require
introducing additional traffic in the network. However,
DACKS and iPAS schemes should be noted as exceptions. To
reduce the priority of the legacy stations, inDACKSnot all the
frames that are successfully transmitted are acknowledged.
Consequently,many properly received frames are retransmit-
ted, hence introducing unnecessary traffic in the network and
increasing the CW size. Meanwhile, iPAS uses a dedicated
control communication link to send feedback information.
As a result, besides the data link, an additional one is
established between server and clients for the control traffic.

5. Deployment Process

Thedesign of the dynamic predictivemodel requires the prior
implementation of the two first phases of the deployment.
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Table 3: Set of AIFSN values analysed.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
BK 7 8 9 8 9 12 10 12 14 14
BE 3 4 5 4 5 6 6 8 10 12
VI 2 2 2 3 3 3 4 5 6 7
VO 2 2 2 2 2 2 2 2 2 2

As outlined in Section 4, these phases allow the independent
adaptation of the AIFSN combination and the CW size for
every AC in EDCA. This section presents the development
performed in the first and second phases. The first phase
also includes the description of the steps that have been
followed in the training and learning phases to model the
initial schemes. Given that the results are shared from one
phase to another, the evaluation of these preliminary parts is
also included.

5.1. AIFSN Adaptation. The models of the first phase aim
to optimize the channel access by identifying the most
suitable AIFSN combination. In this regard, a J48 decision
tree classifier and an M5 regression model have been devel-
oped. The modeling of these schemes has been carried out
independently in order to compare their capabilities and
analyze how the different factors of a network determine their
performance. Further details concerning this analysis, the
development process and the evaluation performance, can be
found in our previous works [26, 27].

According to the analyses carried out in [5, 6], a group
of 10 AIFSN configurations has been selected with the goal
of being an appropriate alternative to the one established
in EDCA. These combinations, which can be observed in
Table 3, have been chosen on the basis of the requirements
previously introduced in Section 4.1. A gradual increase in
the waiting time among each AC has been carried out for that
selection with the aim of reducing the number of collisions
and to enhance the QoS performance of the network. In
particular, these combinations could be grouped into three
different categories, as detailed below.

In the first category, 3 groups of combinations that con-
sider an AIFSN value equal to 2 slots for both the AC VO and
the AC VI can be found. The usage of these values does not
allow reducing the collisions between voice and video frames.
However, this intends to analyze the effect that increasing the
AIFSN values for the BE and BK traffic flows has in reducing
the aforementioned collisions. This group of combinations is
advisable in the presence of a considerable amount of DCF
traffic given that the legacy stations would not have a higher
priority than the video applications to access the channel.

The second division includes 3 sets of combinations that
establish an AIFSN equal to 2 slots for the AC VO and equal
to 3 slots for theAC VI.These values will considerably reduce
the collisions between voice and video applications due to
the reserved time slot for the voice streams. Moreover, with
the aim of studying their effect on the real-time applications
performance, different AIFSN values have been assigned to
the AC BE and AC BK. The values considered in this group
are particularly suitable for a lowDCF traffic load because the

Switch

VO station

VI station
BE station

BK station

DCF station

Access point

802.11 protocol
Wired connection

Figure 5: Network topology used in the deployment.

reduction achieved in the number of collisions compensates
the decrease in the priority for the video transmissions.

The last group is composed of 4 sets of values that
carry out a greater increase in the AIFSN value for the
AC VI than the previously performed. The usage of these
combinations involves a greater reduction in the multimedia
traffic collisions with respect to the previous ones. This is
particularly beneficial for the voice applications given that
they would have several time slots for their exclusive use.
Nevertheless, it should be noted that these combinations are
not recommended for the cases in which there is a huge
number of legacy stations due to the reduction in the priority
for the video transmissions.

The model design to predict the AIFSN combination
starts with a training phase, which requires us to acquire a
considerable amount of information. Accordingly, a huge set
of tests covering a wide range of traffic conditions must be
specified. This makes it possible to discover valuable knowl-
edge and offer more precise predictions. In this work, the
training tests are composed of 18 scenarios which have been
modeled using Riverbed Modeler 18.0.0 [28]. In our simula-
tions, wemodel an IEEE 802.11gwireless LANcell comprising
legacy DCF-based and EDCA stations. The EDCA stations
support four different types of services: Voice (VO), Video
(VI), Best Effort (BE), and Background (BK).TheDCF-based
stations support data traffic. We assume the use of a wireless
LAN consisting of several wireless stations and an AP con-
nected to a wired node that serves as sink for the flows from
thewireless domain. All the stations are locatedwithin a Basic
Service Set (BSS); that is, every station is able to detect the
transmission from any other station. The parameters for the
wired link were chosen to ensure that the bandwidth bottle-
neck of the system is within the wireless LAN (see Figure 5).

The scenarios are divided into two major groups: the first
one considers both DCF and EDCA stations; whereas, the
second group is only composed of stations that make use of
EDCA. Accordingly, this proposal can ensure compatibility
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Table 4: Traffic proportions used for the training step.

# scenario VO VI BE BK DCF
1 20% 20% 20% 20% 20%
2 60% 10% 10% 10% 10%
3 30% 30% 10% 10% 20%
4 10% 60% 10% 10% 10%
5 30% 20% 10% 10% 30%
6 10% 10% 10% 10% 60%
7 10% 10% 20% 20% 40%
8 10% 10% 40% 30% 10%
9 50% 50% — — —
10 10% 10% 30% 30% 20%
11 60% 40% — — —
12 40% 60% — — —
13 — — 40% 30% 30%
14 30% — 20% 20% 30%
15 — 30% 20% 20% 30%
16 — — 50% 50% —
17 20% — 40% 40% —
18 — 20% 40% 40% —

with the legacy DCF stations. Each scenario starts with ten
stations. In each scenario, the number of stations is increased
from 10 to 80 in steps of 10 in order to increase the load of the
wireless network. All the scenarios are composed of a variable
percentage of applications of each type of traffic (BK, BE, VI,
and VO). The traffic distributions used during the training
phase can be seen in Table 4.

In order to adapt the medium access parameters in
EDCA, the AP needs to know the channel occupancy rate
at a given moment. This rate for the downlink traffic can be
easily calculated by the AP. However, the main difficulty lies
in estimating periodically the uplink traffic on the network.
For this reason, the usage of only uplink traffic has been
considered as a design decision. Nevertheless, the scheme can
be also used in the presence of downlink traffic. In this case,
both the uplink and the downlink occupancy rate are used as
input for the algorithm to calculate the EDCA configuration.

In 802.11WLANs stations use different rates, which deter-
mine the channel occupancy.Accordingly, the usage of a set of
values such as 12 and 36Mbps has been considered for all the
stations in the network, regardless of their AC.The remaining
traffic features are unique to each type of traffic, as shown in
Table 5. The BK, BE, and DCF traffic transmissions are mod-
eled via a Pareto distribution with a location of 1.1 and a shape
of 1.25.The voice and video flows are represented by the trans-
mission of G728 [29] and H.264 [30] streams, respectively.
In the case of congestion, the network traffic is susceptible to
experience delivery delays. Voice and video communications
are more sensitive to the effects of this phenomenon than
data transmissions. In this regard, deadline delays of 10 and
100 ms have been established for voice and video streams,
respectively, beyond which these streams are discarded.

The simulations of the training phase are carried out by
defining scenarios where the conditions of all the factors that

Table 5: Traffic parameters used for classifier construction.

Packet size Data rate
DCF 552 bytes 512 Kbps
BK 552 bytes 512 Kbps
BE 552 bytes 512 Kbps
VI 1064 bytes 800Kbps
VO 104 bytes 20Kbps

determine them remain static. The values for such factors
are modified according to a given order until all possible
combinations have been considered. In this way, the predic-
tive models are allowed to acquire real knowledge. In fact, if
variable and random information were provided to the afore-
mentionedmodels, the learning process would be unfeasible.

Although a considerable amount of information is
needed to train the models, not all the parameters used are
included. Some of them do not add any relevant information
and merely made these models more complex. With the
aim of designing accurate but simple classifiers, they must
undergo a supervised variable selection process to discard
those unrelated parameters. After carrying out this process,
only the global occupancy level of the wireless channel and
the particular level of each type of traffic are considered by
the models.

Each predictive algorithm is provided a unique set of
values. The J48 tree classifier only considers those AIFSN
combinations that maximize the voice + video normalized
throughput in each scenario. In contrast, the M5 regression
model is given the information to all the AIFSN combina-
tions, regardless of the throughput achieved. Since thismodel
makes use of a group of regression functions to maximize
the aforementioned throughput, this value must also be
provided. As a result, the M5 model finally generates ten sets
of submodels; that is, it contains one group of rules perAIFSN
tested combination. This whole process makes it possible to
obtain a good approximation of the network conditions while
allowing the design of simple and accurate predictivemodels.

Both the preprocessing step and the design of the models
have been carried out using Weka 3.7.0 [25]. As a part of
the design process, a 10-fold cross validation is performed to
guarantee that both the training and the testing data sets are
independent. This process results in a hit rate of 94.90% for
the J48 tree. Meanwhile, the M5 model achieves an average
correlation coefficient of 0.8916 and a mean absolute error of
0.0554.These values show the accuracy of the proposedmod-
els and the strong relation among the parameters involved.

The second phase of the work and the tuning of the CW
size take as a starting point the enhancements achieved by the
first one in order to address the existing weaknesses. For this
reason, a performance analysis of themodels is required.This
process is performed via simulation using Riverbed Modeler
18.0.0, through which 20 scenarios different from those used
during the training step have been designed. The network
topology used in the evaluation is the same as that presented
in the training phase (see Figure 5). The scenarios are com-
posed of 100 stations which use DCF and EDCA as medium
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Table 6: Description of the set of test scenarios.

# scenario Voice Video BE BK DCF
1 20% 1.5% 2% 2% 2%
2 20% 5% 2% 2% 2%
3 8% 7% 2% 2% 2%
4 16% 6% 3% 3% 7%
5 6% 2% 3% 3% 10%
6 6% 3% 4% 4% 8%
7 5% 3% 7% 7% 4%
8 5% 6% 10% 5% 5%
9 5% 9% 6% 6% 6%
10 8% — 8% 8% 8%
11 — 6% 6% 6% 9%
12 5% 6% 6% 6% 6%
13 20% 8% — — —
14 9% 4% — — —
15 5% 10% — — —
16 6% 7% 7% 7% —
17 8% — 8% 8% —
18 — 8% 7% 7% —
19 8% 8% 6% 6% —
20 8% 7% 8% — —

access functions. The first twelve scenarios consider both
types of stations, while in the remaining eight only stations
that support EDCA can be found. Furthermore, an equal pro-
portion of stations of each type of traffic has been considered;
that is, 20 stations per type of traffic have been included.
However, not all the applications are active at the same time.
On the contrary, they are enabled or disabled according to a
probability that depends on their AC (see Table 6).

Every scenario takes 600 seconds to be simulated, with
this simulation divided into two periods. During the first one,
and every 30 seconds, the stations which are not transmitting
any information try to start a new transmission according to
the aforementioned probability. During the second period,
the stations attempt to stop the current transmissions every
30 seconds, making use of the same probability. Due to all
scenarios being simulated by using 60 random seeds and each
of them being divided into 20 time intervals, in the end 24000
different intervals have been tested.

The traffic features for each station depend on the type
of traffic it transmits. Regarding this, the bit rate and packet
size used to verify the models are the same as those shown
in Table 5. The stations are randomly distributed over the
network coverage. Furthermore, the Ricean [31] model deter-
mines the signal propagation through the wireless medium.
This model is characterized by a factor, 𝑘, which defines the
ratio between the power in the line-of-sight component and
the power in the scattered paths. In this work, a 𝑘 factor of 32
has been used. Moreover, IEEE 802.11g [32] defines the phys-
ical layer of the network.The stations use all the transmission
rates defined in this amendment regardless of the traffic type.

The results allow it to compare the performance achieved
by the proposed schemes and EDCA. To summarize these

Table 7: Voice + video normalized throughput improvements in
30 s intervals (AIFSN tuning).

With DCF traffic Without DCF traffic
J48 M5 J48 M5

Unaltered 49.42% 52.11% 35.52% 31.30%
Losses 4.49% 5.48% 2.55% 1.44%
Gain [1%–5%] 27.20% 23.37% 23.64% 17.35%
Gain [5%–10%] 8.67% 12.78% 6.68% 5.93%
Gain [10%–15%] 6.06% 2.86% 7.41% 6.89%
Gain [15%–20%] 2.01% 1.52% 4.48% 4.55%
Gain [from 20%] 2.16% 1.90% 19.73% 32.55%

results properly, a group of statistics has been defined. These
statistics show the voice + video normalized throughput, the
number of retransmission attempts, the normalized through-
put of the DCF applications, and the global throughput of the
network. The first metric refers to the sum of the normalized
throughput of both voice and video applications.

Table 7 shows the percentage of the 24000 time intervals
evaluated in which the proposed models experience losses or
gains with regard to EDCA. Notice that, especially if both
DCF and EDCA applications are considered, almost half of
the intervals remain unaltered.We have considered unaltered
results to be those in which the gains or the losses are
lower than 1%. This situation is a consequence of the stations
attempting to both start and finish their transmissions during
the first and the last five simulation intervals. The traffic load
in many of these cases is low, so all the AIFSN combinations
achieve the highest throughput. Moreover, in the scenarios in
which many stations use DCF, the default EDCA combina-
tion is the most efficient option.Therefore, in these scenarios
the predictive schemes also use these values to access the
medium.

Table 7 also presents some losses with regard to EDCA.
Losses have been defined as those intervals in which the
models experience a performance decrease higher than 1%.
These losses result from some certain cases in which our
schemes miss the prediction. The use of a small number of
parameters to design the models provides a good approxima-
tion of the network conditions. However, due to its simplicity,
this image is not perfect, having as a consequence some errors
in the parameter prediction. The aforementioned losses are
also because the selection of a different AIFSN combination
makes someminimum changes in the traffic status thatmight
be considered as losses when they really are not. Nevertheless,
the cases in which this phenomenon occurs are much fewer
than those in which the schemes outperform EDCA.

Nevertheless, Table 7 shows how our models improve the
performance achieved by EDCA in many more scenarios.
These improvements are from 20% in some cases, being even
higher if only EDCA applications are considered. Thus, in
19.73% and 32.55% of the intervals, enhancements of 20% are
achieved when using the J48 and M5 models, respectively.
Given that in some intervals the traffic load level does not
allow the observation of the performance difference between
the proposal and EDCA, Figure 6 presents the voice + video
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Figure 6: Voice + video norm. Throughput (AIFSN adaptation).

normalized throughput of the ten intervals in which traffic
congestion becomes a key factor. In this figure, it is proved
that in all the scenarios the predictive schemes outperform
EDCA.

Theproximity of the EDCAvalues, especially between the
voice and video traffic, constrains the network performance
due to the huge number of collisions.The appropriate AIFSN
tuning of this approach allows it to optimize the channel
access, resulting in a decrease in the number of collisions and
retransmissions (see Figure 7). This is the main reason why
the QoS level provided to real-time applications is enhanced.
Furthermore, this improvement also leads to an increase in
the overall throughput of the network, as can be seen in
Figure 8.

A suitable separation of the AIFSN values, particularly
in those cases in which the AIFSN for video traffic is higher
than 2 slots, provides the stations that do not support QoS
features with a higher priority to access the wireless medium.
While ensuring compatibility with this type of stations, the
proposed models improve their performance, as can be
observed in Figure 9. It is important to point out that, despite
this increase in the priority, the performance achieved by the
multimedia communications is not only penalized but also
enhanced in all the cases tested, as depicted in Figure 6.

Although both the presented predictive models enhance
the performance of EDCA, they have certain features which
make them quite different. On the one hand, the features
of the J48 classifier allow it to achieve better results in the
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Figure 7: Overall retransmission attempts (AIFSN adaptation).
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Table 8: Proposed values for the CWmin and CWmax limits.

CW 1 CW 2
CWmin CWmax CWmin CWmax

BK 2 ⋅ aCWmin + 1 aCWmax 2 ⋅ aCWmin + 1 aCWmax

BE 2 ⋅ aCWmin + 1 aCWmax 2 ⋅ aCWmin + 1 aCWmax

VI aCWmin 2 ⋅ aCWmin + 1 2 ⋅ aCWmin + 1 2 ⋅ aCWmin + 1
VO (aCWmin + 1)/2 − 1 aCWmin aCWmin aCWmin
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Figure 9: DCF norm. Throughput (AIFSN adaptation).

presence of a considerable load of DCF traffic. On the other
hand, the gains experienced by the M5 model are higher in
those scenarios in which DCF traffic is not considered or the
number of these transmissions is relatively low. Moreover,
in spite of the fact that neither model is computationally
complex, the M5 regression model requires evaluating the
voice + video normalized throughput for every AIFSN
combination. Therefore, the J48 decision tree has a lower
computational cost due to the minimum set of comparisons
needed.This feature is especially important with regard to the
execution of the medium access function in real-time.

5.2. CWAdaptation. Themain aim of the second phase of this
proposal is to further improve the multimedia communica-
tions through the reduction of the collisions among the flows
of the sameAC. Based on the evaluation performed in thefirst
phase, it has been shown that in several scenarios there is still
room for improvement. In this regard, in the second phase, the
collision reduction problem is addressed by estimating the
optimum values for the CW size without neither increasing
severely the waiting time to access the channel nor reducing
the priority of the real-time applications.

As is the case with the AIFSN, the IEEE 802.11e amend-
ment establishes a set of values for the CW size (see Table 1).
These values seek to ensure an appropriate QoS level, while
maintaining compatibility with the legacy stations. Indeed,
they aim to achieve good network performance when it hosts
a considerable amount of legacy applications. In these cases,
the selection of longer periods for the CW size would result
in an earlier access to the medium by the DCF stations. In
this way, the priority of this type of traffic would be increased
with regard to video traffic, instead of being similar to that
of the BE streams. For this reason, the adaptation of the CW

parameter is of particular interest in scenarios where there is
a low or null DCF traffic load.

Taking into account the huge number of collisions inWi–
Fi networks, mainly between voice and video transmissions
due to the very small values of the CWmin and CWmax
parameters, we have considered relevant to study the effect of
carrying out these last increases. In order not to prejudice the
priority of the multimedia applications the size of the CWmin
for AC BE and AC BK has been also enlarged.The CWmax of
these ACs has not been increased due to its high value.

Based on the prediction of the schemes designed in the
first phase of the proposal, the CWmin and CWmax limits are
increased with regard to the default EDCA values, as can be
seen in Table 8. In the Backoff algorithm the CW size follows
an incremental sequence of 2𝑐 − 1 whenever a station needs
to retransmit a frame.This factor is given special attention in
this second phase, with the proposal of two approaches called
CW 1 and CW 2.

The first modification of the CW size, called CW 1,
increases the 𝑐 parameter by one with respect to EDCA for
every AC. The only exception is the CWmax limits for the BE
and BK ACs, which maintain the default values. Given that
these values are large enough, they are not modified with the
aim of not introducing unnecessary waiting times into the
network. The second version, called CW 2, follows a similar
pattern to its predecessor. As the objective of this second
proposal is to avoid the collisions between the voice and video
traffic, only the duration of CWmin of these ACs is modified
by increasing the 𝑐 parameter by two units. Furthermore,
the CWmax limits for all the ACs keep the same values as
those used in the CW 1 approach. Notice that neither of the
proposed configurations considers a reduction in the size of
CW. This reduction, especially for the ACs whose limits are
relatively small such as voice and video ACs, would result in a
huge increase in the number of collisions between the frames
of the same type of traffic.

An increase in the size of CW involves longer periods of
time for the stations to finish the Backoff algorithm. More
specifically, some combinations of AIFSN values and CW
sizes may result in a considerable decrease in the priority
of the stations that use EDCA with regard to those that use
DCF. For this reason, the four approaches presented inTable 9
reduce the distance among the AIFSN values of all the ACs
in order not to accumulate excessive waiting periods. All
of these approaches aim to show the performance achieved
when combining an increase in the length selected for the
CWmin and CWmax parameters with the use of lower values
from those predicted for the AIFSN combination. In this
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Table 9: Optimization configurations for the CW size and AIFSN combination.

Configuration 1 Configuration 2 Configuration 3 Configuration 4
AIFSN Predicted Predicted Prev. combination 2nd Prev. combination
CW Default CW 1 CW 1 CW 2

way, the objective is to verify whether this strategy is able to
outperform the results already achieved for voice and video
communications. Finally, a total of eight predictive schemes
are obtained given that each of the four proposed configura-
tions can be used with both the J48 and the M5 models.

The first configuration proposed in Table 9, called Con-
figuration 1, refers to the already modeled schemes in the
first phase. In the remaining configurations, the adaptation
of the CW size is carried out according to the values shown
in Table 8. In this regard, Configuration 2 and Configuration
3 take the CW size of the combination CW 1. By contrast,
Configuration 4 takes the values related to theCW2 approach.
Furthermore, the AIFSN combination can be chosen from
among 3 different sets of values. Firstly, the prediction made
for this parameter in the first phase can be maintained,
as is the case with Configuration 1 and Configuration 2.
Moreover, as is done for Configuration 3, another option is
to select the AIFSN combination immediately below the one
predicted by the J48 and M5 models. Likewise, the AIFSN
combination can be tuned using the values provided by the
second combination immediately below the predicted one.
More specifically, this combination, which is used by Con-
figuration 4, establishes a smaller spacing among the values
of all the ACs. The selection of the aforementioned AIFSN
combinations is carried out whenever possible, provided that
they do not exceed the default EDCA one.

The real aim of this proposal is to design a dynamic pre-
diction scheme for the EDCA parameter set. For this reason,
in addition to the results obtained from the AIFSN tuning
in the first phase, it is necessary to evaluate the performance
achieved by these eight new preliminary schemes. In fact,
the results of both the two phases will become the basis
for developing the dynamic predictive model in the third
phase. In order to carry out this task, we have considered
the same simulation conditions and scenarios defined in the
previous evaluation. In this way, it is possible to ensure a fair
comparison of the results of both phases.

In Figure 10 the results in terms of voice + video normal-
ized throughput are presented.The quality of the multimedia
applications is mainly conditioned by the presence of stations
that use DCF.This is due to the fact that a too large increase in
the size of CW, particularly when the traffic load of the legacy
stations is relatively high, has as a consequence a reduction
in the performance of the voice and video transmissions.
Despite these aspects, a small increment in the size of CW
under lowDCF traffic loads contributes to outperforming the
results achieved by the J48 and M5 initial models. Neverthe-
less, this situation differs in scenarios where there are no sta-
tions which use the DCF function. In most of these cases, the
usage of a larger size for CWmakes it possible to improve the
performance of the real-time applications. Various examples
of this phenomenon can be observed in Figure 10.
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Figure 10: Voice + video norm. Throughput (CW adaptation).

The enhancements achieved in this second phase are
mainly due to the reduction of both internal and external
collisions among the traffic flows of the different ACs. As a
consequence, a decrease in the number of retransmissions in
the network is achieved. In the presence of a high number
of stations that utilize the DCF function, using an AIFSN
combination below the one that has been already predicted
in the first phase of the proposal might result in an increase
in the number of retransmissions. In spite of this fact, and as
can be observed in Tables 10 and 11, the adequate selection
of the size of CW allows the schemes to keep this number of
retransmissions constant or even lower.

The increase in the waiting time to access the wireless
medium for the video traffic flows has as a consequence an
improvement in the performance of the legacy applications
that use DCF.This phenomenon can be observed in Table 10,
in which the legacyDCF stations achieve a higher throughput
than in the first phase of the development.Nevertheless, this is
not the real aim of these predictive schemes. In scenarios in
which the DCF traffic load becomes high and the proposed
approaches increase the duration of the CW parameter, the
performance of these applications is improved, even if it is
a secondary objective of the proposal. As a result, the global
performance of the network is also enhanced. As it is shown
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Table 10: Overview of the CW adaptation results (scenarios with DCF and EDCA stations).

Standard J48 P1 J48 P2 J48 P3 J48 P4 M5 P1 M5 P2 M5 P3 M5 P4
VO + VI Norm. Th. 0.9259 0.9440 0.9225 0.9227 0.9016 0.9438 0.9312 0.9242 0.9022
Retrans. per Pkt 0.5447 0.4459 0.3469 0.3636 0.3662 0.4271 0.3473 0.3659 0.3724
Global Norm. Th. 0.6014 0.6199 0.6420 0.6395 0.6425 0.6225 0.6399 0.6379 0.6390
DCF Norm. Th. 0.5498 0.6790 0.7965 0.7743 0.7715 0.7118 0.8056 0.7876 0.7812

Table 11: Overview of the CW adaptation results (scenarios with EDCA stations).

Standard J48 P1 J48 P2 J48 P3 J48 P4 M5 P1 M5 P2 M5 P3 M5 P4
VO + VI Norm. Th. 0.7759 0.8790 0.9415 0.9385 0.9419 0.9338 0.9596 0.9531 0.9549
Retrans. per Pkt 0.4604 0.3428 0.2271 0.2456 0.2234 0.3329 0.2288 0.2450 0.2267
Global Norm. Th. 0.6776 0.6965 0.7329 0.7320 0.7450 0.7010 0.7304 0.7296 0.7408

in Table 11, the predictive schemes achieve an enhancement
in terms of voice + video normalized throughput in the
absence of legacy DCF stations, which in turn involves an
improvement in the global performance of the network.

Following the evaluation performed in this second phase,
it can be concluded that the adaptation of the size of CW
keeps enhancing the quality of themultimedia transmissions.
Nevertheless, it must be taken into account that an excessive
increase in this parameter in the presence of a considerable
number of stations that use DCF would penalize the per-
formance of the video applications. In fact, in view of these
situations, this increment should not be carried out.

Finally, the wide variety of results that have been obtained
in both the already presented phases is clearly noticeable.
As a consequence, it requires carrying out a deep analysis
process to define in a precise way the network conditions
in which the different approaches achieve the optimum
performance. In fact, this analysis becomes the starting point
for the development of the dynamic prediction scheme for the
medium access parameters in EDCA.

6. Dynamic EDCA Prediction Scheme

In the previous section, four medium access parameter
configurations are proposed for the J48 andM5 initialmodels
(see Table 9). As a result, a total of 8 predictive schemes
have been obtained. These schemes are named after the
predictive model (M5 or J48) and the configuration used, for
example,M5Configuration 1 for the scheme that uses the first
parameter configuration of the M5 model.

Given the wide variety of schemes and their achieved
results, it is essential to unify them into a single one which
is able to discriminate among all of them. This unification
must be carried out through an exhaustive analysis of the
results obtained. In this regard, a set of traffic patterns, which
determines the structure of the dynamic prediction scheme
has been identified. This structure is shown in Algorithm 2,
where the behavior of the algorithm is mainly conditioned by
the presence of DCF traffic. In spite of having designed 8 pre-
dictivemodels, not all of them are able to predict themedium
access parameters accurately. Moreover, it has been proved

If (DCF channel ocuppancy == 0 &&
BE channel ocuppancy == 0 &&
BK channel occupancy == 0)
M5 Proposal 2

else if (DCF channel ocuppancy == 0)
J48 Proposal 3

else if (DCF channel ocuppancy <= 0.15)
M5 Proposal 3

else if (DCF channel ocuppancy > 0.15)
J48 Proposal 1

Algorithm 2: Structure of the dynamic prediction scheme.

that several schemes achieve similar results. Therefore, the
final dynamic scheme is only composed of 4 submodels.

The analysis of the results consists of studying the param-
eter configurations that achieve the highest performance in
each one of the proposed scenarios. After that, the results
have been filtered in order to choose only the most suitable
combination in every case. However, in some scenarios,
several configurations provide similar results in accordance
with the established traffic patterns. On this basis, and to
simplify themodel, only one of these potential candidates has
been finally selected for the corresponding traffic pattern.

The evaluation highlights that, in the presence of DCF
traffic, its occupancy level plays the most important role. If
this level is higher than 15%, the best results are provided
by the first version of the J48 classifier (J48 Proposal 1). This
model does not increase the size of CW, which is a proper
decision that does not penalize the video applications when
accessing themedium. In fact, in the first development phase,
it was proved that, when the network carries a high DCF
traffic load, the J48 model achieves better performance than
the M5 one. By contrast, if this occupancy level is lower than
15%, M5 Proposal 3 achieves the best performance. As this
traffic level is relatively low, this selection is appropriate due
to the fact that the increase in the CW size makes it possible
to reduce the collisions among the frames of the same AC.



16 Wireless Communications and Mobile Computing

Table 12: Voice + video normalized throughput improvements in
30 s intervals (dynamic scheme).

With DCF traffic Without DCF traffic
Unaltered 56.37% 34.27%
Losses 2.46% 1.19%
Gain [1%–5%] 23.29% 15.01%
Gain [5%–10%] 6.49% 5.95%
Gain [10%–15%] 2.96% 7.54%
Gain [15%–20%] 2.94% 6.19%
Gain [from 20%] 5.49% 29.85%

By contrast, if there are no applications without QoS
support, voice and video applications become the most
important factor. When the network only carries voice and
video traffic, M5 Proposal 2 provides the most accurate
prediction. Given that thismodel keeps theAIFSNprediction
and increases the CW size, it enables a reduction in the
number of collisions among the multimedia streams and, as
a result, an improvement in the performance of the network.
Meanwhile, if other types of traffic are considered, the best
option is to select the third version of the J48 classifier (J48
Proposal 3).Thismodel offers a trade-off between theCWsize
and the differentiation given by the AIFSN values chosen. In
this context, with the exception of the first proposal of this
model which does not take into account the size of CW, the
remaining ones achieve a similar performance.

In addition to implementing the design presented above,
the real adaptation capacity of the proposal must be verified.
In this respect, to compare the performance achieved, the
statistics show the results for EDCA, both the J48 andM5 ini-
tial models and the schemes of the second phase that achieve
a higher voice + video normalized throughput. These latter
schemes are denoted as J48∗ and M5∗. The results for the
modeled dynamic scheme are also included.

Table 12 presents the results of the voice and video perfor-
mance in terms of the percentage of time intervals into which
simulations are divided. Notice that the percentage of unal-
tered intervals presents only minor changes with regard to
previous evaluations (see Table 7).However, taking advantage
of the strengths of each model makes it possible to reduce the
amount of losses with regard to EDCA. In fact, the percentage
of intervals in which any type of improvement is achieved
reaches 41.17% and 64.54% in the presence and absence
of DCF traffic, respectively. These enhancements are more
meaningful when there are no stations without QoS support
in the network, such enhancements being from 20% in
29.85% of the cases. In Figure 11 it can be seen that the
dynamicmodel outperforms the remaining ones in almost all
the tested scenarios. This results from properly choosing the
prediction scheme that selects the most suitable parameter
configuration at every moment.

The appropriate selection of the AIFSN combination and
the CW size reduces the collisions in the network, which
results not only in an increase in the voice + video normalized
throughput but also in an improvement in the overall network
performance (see Tables 13 and 14). The results indicate that
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Figure 11: Voice + video norm. Throughput (dynamic adaptation).

the dynamic scheme reduces the number of collisions with
regard to both EDCA and the models of the first phase (J48
and M5). However, this scheme obtains a greater number
of collisions than the J48∗ and M5∗ approaches. This is
due to the fact they penalize the real-time applications. The
same reasoning applies to the enhancement of the global
performance of the network.

The DCF traffic throughput has also been analyzed. As
can be seen in Table 13, this throughput depends on its
occupancy level in the network. If this value remains low, the
performance of these stations is the sameor betterwhenusing
the dynamic model than when using EDCA. Nevertheless, if
the network carries a considerable amount of DCF transmis-
sions, the dynamic parameter combination allows it to trans-
mit less DCF traffic than the remaining analyzed options. In
particular, these last options damage heavily the performance
of video applications. Therefore, the dynamic approach is
logical, given that it seeks to improve the quality of the real-
time transmissions.

To conclude this analysis, the improvement in terms of
voice + video throughput achieved by our scheme is evalu-
ated. The improvement shown is based on the traffic load of
the voice and video applications. To that end, both the voice
and video traffic flows have been divided into two groups: the
first group contains the results for the 10 scenarios that hold
the lowest voice traffic load (called low video traffic load),
while the second one, referred to as high voice traffic load, is
made up of the 10 scenarios with the highest voice traffic load.
The same description applies to the video applications. Dur-
ing the performance analysis it has been proved that the exis-
tence of stations that use the DCF function plays a decisive
role in the network performance. Therefore, the results are
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Table 13: Overview of the dynamic adaptation results (scenarios with DCF and EDCA stations).

Standard J48 J48∗ M5 M5∗ Dynamic
VO + VI Norm. Th. 0.9259 0.9440 0.9227 0.9438 0.9312 0.9512
Retrans. per Pkt 0.5447 0.4459 0.3636 0.4271 0.3473 0.4267
Global Norm. Th. 0.6014 0.6199 0.6395 0.6225 0.6399 0.6263
DCF Norm. Th. 0.5498 0.6790 0.7743 0.7118 0.8056 0.7496

Table 14: Overview of the dynamic adaptation results (scenarios with EDCA stations).

Standard J48 J48∗ M5 M5∗ Dynamic
VO + VI Norm. Th. 0.9259 0.9440 0.9419 0.9438 0.9596 0.9683
Retrans. per Pkt 0.4604 0.3428 0.2234 0.3329 0.2288 0.2247
Global Norm. Th. 0.6776 0.6965 0.7050 0.7010 0.7304 0.7331
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Figure 12: Voice + video throughput gain achieved by the dynamic
scheme on the basis of two different voice traffic loads.

also presented according to the presence or absence of these
legacy DCF stations in the wireless network. These results
can be observed in Figures 12 and 13.

Figure 12 shows the performance gain for the two afore-
mentioned voice traffic loads. In this figure it is clearly seen
that the enhancement achieved is higher when the scenarios
are only composed of stations that use EDCA, as depicted
in Figure 13(b). In fact, as the network load increases, this
enhancement becomes higher, being it from 30% in the case
of a high voice traffic load. By contrast, in Figure 13(a) it is
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Figure 13: Voice + video throughput gain achieved by the dynamic
scheme on the basis of two different video traffic loads.

shown that the improvement made by our scheme is slightly
smaller in the presence of legacy stations. This is because,
when the network holds a highDCF traffic load, the proposed
scheme usually uses the default values for the parameter set,
as EDCA does. Moreover, it can be also observed that further
improvements are done in scenarios in which a high voice
traffic load is transmitted.

Similar results are found when analyzing the behavior
of the two defined video traffic loads (see Figure 13). In the
case of scenarios without stations that use DCF to access
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the channel, the enhancement achieved by our proposal is
markedly increased. Moreover, when a high amount of video
applications are transmitted in the network, the throughput
improvement is much higher. Finally, notice that, in the
analysis of the video applications, the differences found
between a low and a high video traffic load are lightly smaller
than in the voice transmissions case.

7. Conclusions

In this paper, we have proposed a new dynamic prediction
scheme which aims to enhance the quality of voice and
video transmissions over IEEE 802.11 WLANs. This scheme
dynamically adapts the AIFSN combination and the CW size
to optimize the access to the medium for stations that use
EDCA, while ensuring compatibility with those that only
support DCF.The proposal is composed of several predictive
submodels made up of J48 decision tree classifiers and M5
regression models, and it is only used by the AP of the
network. As a consequence, no changes need to be made
to current commercial network cards. Furthermore, periodic
communication of the medium access parameters is carried
out through the use of beacon frames, avoiding in this way the
introduction of additional control traffic into the network.

The results have proved that the proposal improves the
EDCA capacities, boosting the performance of the multime-
dia communications by more than 20% in some scenarios.
This improvement is achieved via both suitable separation of
theAIFSNvalues and the appropriate selection of theCWsize
for each AC. Furthermore, this approach leads to a reduction
in the number of retransmission attempts and contributes to
enhancing the global throughput of the network.
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