
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:12564–12584
https://doi.org/10.1007/s11227-024-05926-z

1 3

Energy‑focused simulation of edge computing 
architectures in 5G networks

Blas Gómez1 · Estefanía Coronado1,2 · José Villalón1 · Antonio Garrido1

Accepted: 21 January 2024 / Published online: 17 February 2024 
© The Author(s) 2024

Abstract
While cloud computing is crucial in processing data from devices with low com-
putational power, the latency introduced by the Internet backhaul limits real-time 
applications. By situating computing resources at the network’s edge, edge comput-
ing offers low-latency services by offloading computations from high-performance 
computing (HPC) data centers to the edge servers, reducing wide Area network 
(WAN) strain. As a result, edge computing has unlocked opportunities for innovative 
applications that were previously unfeasible, such as connected vehicles or medical 
robotics. Nonetheless, deploying the infrastructure required to support edge comput-
ing services raises sustainability and energy consumption concerns. Consequently, 
the development of tools enabling researchers to explore innovative approaches to 
reducing the energy impact of edge computing is crucial. In this work, we present 
MintEDGE, a network simulator focused on the energy consumption of edge com-
puting. Our simulator allows testing energy-saving approaches and task placement 
algorithms in realistic large-scale scenarios encompassing entire regions.

Keywords  Network simulator · Multi-access edge computing · Energy efficiency · 
Edge computing · 5G

 *	 Blas Gómez 
	 blas.gomez@uclm.es

	 Estefanía Coronado 
	 estefania.coronado@uclm.es

	 José Villalón 
	 josemiguel.villalon@uclm.es

	 Antonio Garrido 
	 antonio.garrido@uclm.es

1	 High‑Performance Networks and Architectures, Universidad de Castilla-La Mancha, Albacete, 
Spain

2	 I2CAT Foundation, Barcelona, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05926-z&domain=pdf


12565

1 3

Energy‑focused simulation of edge computing architectures…

1  Introduction

High-performance computing  (HPC) has become indispensable in our quest for 
smarter digital infrastructures, enabling the advanced processing of, and the making 
of inferences from the data gathered by a multitude of devices that lack the compu-
tational power to perform the processing themselves. However, while current sen-
sors and smart devices typically offload this computation to their cloud back-end, 
this paradigm introduces a challenge in terms of latency due to the delay intro-
duced by the Internet backhaul. This hinders the development of new applications 
to which timely decision-making is crucial, such as autonomous driving or medi-
cal robotics. Consequently, there is a growing demand for computing capabilities 
in the proximity of the users and, therefore, a shift in how data is processed and 
services delivered, moving from cloud computing toward edge computing. In this 
context, cellular networks, as the user’s entry point to the network, can play a crucial 
role in providing these computing resources via edge servers alongside the Radio 
Access Network (RAN). This deployment of computing capabilities at the edge of 
the network has a profound impact in reducing latency and enabling a myriad of 
new applications, while also reducing the pressure on the capacity of the Wide Area 
Networks (WANs). These edge servers require HPC capabilities to handle complex 
tasks, such as image recognition, machine learning, or real-time sensor data process-
ing. Moreover, the exponential growth in data generation poses a significant chal-
lenge to communication capacity. To effectively address this issue, it has become 
imperative to perform data pre-processing at the network edge [1].

Global warming and the ongoing energy crisis have heightened awareness of 
the energy footprint linked to communication and computing infrastructures. The 
European Union predicts that by 2025, edge systems will account for 12% of the 
computing infrastructures energy footprint  [2]. Additionally, several studies  [3, 4] 
emphasize the importance of designing these infrastructures with energy efficiency 
and sustainability in mind. Consequently, developing efficient techniques to mitigate 
the energy footprint of edge computing is essential. However, evaluating these tech-
niques using hardware testbeds can be challenging due to their cost, limited scal-
ability, and lack of hardware diversity. In this context, network simulators provide a 
valuable and practical tool for network research, offering cost-effectiveness, a con-
trolled experimentation environment, scalability, and reproducibility. They expedite 
protocol development and foster global collaboration by providing accessible tools 
to model diverse network scenarios. In fact, the literature already offers different 
edge computing simulators such as EdgeCloudSim [5] and iFogSim2 [6]. However, 
these simulators prioritize network performance and quality of service (QoS) over 
energy consumption and scalability. On the other hand, the authors of  [7] present 
LEAF, a fog and edge computing simulator that, in contrast to [5, 6], is focused on 
energy consumption. However, LEAF lacks QoS and performance metrics. Further-
more, the ambitious design goals of 6G networks entail a growing dependence on 
Artificial Intelligence  (AI) and Machine Learning  (ML). Consequently, providing 
researchers with tools to simulate realistic user mobility and test the accuracy of dif-
ferent workload predictors for proactive approaches is also crucial.



12566	 B. Gómez et al.

1 3

To address these challenges, this work presents a multi-tier simulator for energy-
aware strategies in edge computing (MintEDGE). MintEDGE is a versatile edge 
computing simulation framework that prioritizes energy consumption while also 
including QoS and performance metrics, extending our previous work  [8]. Mint-
EDGE permits the configuration of infrastructure features, orchestration, and user 
mobility, empowering researchers to test innovative energy optimization strategies 
and workload predictors in large-scale scenarios, such as entire cities or regions 
with numerous users. MintEDGE aims to provide a tool for researchers to evaluate 
strategies for energy-efficient resource allocations for current infrastructures, such 
as service placement, VM scaling, and the selective deactivation of edge servers. In 
particular, the contributions of this work are as follows: 

(i)	 We identify the desirable features of a modular, RAN agnostic edge computing 
simulator.

(ii)	 We outline MintEDGE’s architecture, which is designed for 5G and edge com-
puting but can be easily extended to other access networks or architectures such 
as Wi-Fi or Multi-access Edge Computing (MEC) [9].

(iii)	 We describe MintEDGE’s key functionalities, such as cellular user configuration 
(e.g., mobility, request arrival rate), the definition of edge services requirements, 
the introduction of workload predictors, and real map testing scenarios thanks 
to integration with the state-of-the-art urban mobility simulator developed by 
Alvarez et al., SUMO [10].

(iv)	 We employ MintEDGE to comprehensively evaluate the real infrastructure of 
an Mobile Network Operator (MNO) in The Netherlands in scenarios of various 
sizes, demonstrating its capacity to cope with large-scale realistic scenarios.

(v)	 MintEDGE is released under a permissive MIT license, allowing free use, modi-
fication, and distribution.1

The rest of the paper is organized as follows. Section  2 provides an overview of 
the related work and Sect. 3 describes MintEDGE’s requirements and architecture, 
providing insights into the network and energy models. Then, Sect. 4 reports on the 
performance evaluation, and Sect. 5 contains the conclusions and future work.

2 � Related work

Network simulators provide an efficient way to conduct controlled experiments, 
allowing researchers to enhance their understanding of networking principles and 
develop innovative solutions while minimizing costs and real-world deployments 
risks. Traditional network simulators, such as NS-3 [11] or OMNeT++ [12], exten-
sively model all networking layers, with particular emphasis on the physical layer, 
including error rates and interference models. However, they lack representation of 

1  MintEDGE is available at https://​github.​com/​blasf1/​MintE​DGE.

https://github.com/blasf1/MintEDGE


12567

1 3

Energy‑focused simulation of edge computing architectures…

the computational resources of the network in architectures such as edge and fog 
computing. Furthermore, these simulators lack dynamism in the placement of tasks 
and applications and the assignment of resources, and their high level of detail 
results in slow simulation speeds for larger-scale scenarios, which is essential when 
testing orchestration approaches. For this reason, researchers and developers have 
introduced new simulators for edge and fog computing architectures, and in this sec-
tion, we provide an overview of some of them.

EdgeCloudSim [5] is based on CloudSim [13], a simulation framework that ena-
bles the modeling and simulation of cloud computing infrastructures. EdgeCloud-
Sim adds functionality to CloudSim to support edge computing scenarios in an easy-
to-use and efficient manner, as well as providing a modular architecture that makes 
it possible to focus on both the network and the computational resources. However, 
EdgeCloudSim lacks energy consumption models and customizable mobility mod-
els in its current version. Another simulator based on CloudSim is iFogSim  [14], 
which focuses on edge and fog computing with a significant emphasis on IoT appli-
cations. IFogSim has evolved into iFogSim2 [6], incorporating new scenarios, use 
cases and customizable mobility. While iFogSim and iFogSim2 inherit basic energy 
consumption metrics from CloudSim, their simplistic model, which is based on two 
power levels (idle and busy), lacks the ability to assess individual computing nodes 
or model energy consumption in the transport network. In  [15], the authors intro-
duce PFogSim, a Fog Computing simulator based on EdgeCloudSim and iFogSim. 
PFogSim extends the capabilities of its predecessors by allowing for multilayered 
architectures but does not provide any energy metrics. Conversely, Yet Another Fog 
Simulator (YAFS) [16], based on complex network theory, concentrates on the rela-
tionships between infrastructure nodes and applications in IoT scenarios. However, 
YAFS does not include energy or user mobility models.

In  [17], the authors introduce PureEdgeSim, which uses analytical and numeri-
cal modelling research on the edge-to-cloud continuum. It primarily focuses on 
large-scale IoT and offers an extensive energy model for battery-constrained devices. 
However, it lacks models for the energy consumption of edge servers and the trans-
port network. Moreover, PureEdgeSim does not support customizable mobility, and 
details on the mobility model, which seems to follow random routes, are not pro-
vided. The authors of [18] present FogTorchPi, a tool focused on the placement of 
applications in the computing resources of Fog Computing nodes, and in particular 
on the study of the feasibility of different deployments. However, while it provides 
extensive QoS attributes and a cost model, it does not provide any energy modelling. 
In [7] the authors introduce LEAF, another Fog simulator whose primary focus is 
on large deployment energy consumption. They use a linear energy model, which 
accounts for energy consumption per basic operation carried out on the CPU, show-
ing its accuracy and scalability. However, they focus on energy consumption, and 
they do not provide essential QoS metrics such as latency. Additionally, LEAF lacks 
the implementation of a user mobility model.

The above overview, summarized in Table 1, highlights the fact that current state-
of-the-art simulators often lack customizable and accurate mobility models, accurate 
energy modeling, or both. Moreover, some of them struggle to handle large-scale 
scenarios, and most focus on IoT and Fog Computing, thus ignoring edge computing 



12568	 B. Gómez et al.

1 3

infrastructure’s energy consumption and placement strategies, not supporting archi-
tectures such as ETSI’s  [9]. Our proposal, MintEDGE, is a modular lightweight 
simulation framework that addresses these shortcomings by incorporating accurate 
mobility models, including the use of mobility traces such as [19] or [20] thanks to 
the integration of SUMO, and by providing accurate and lightweight energy con-
sumption models thanks to the integration of LEAF’s energy model. Consequently, 
MintEDGE is the first simulator that includes, simultaneously, infrastructure’s 
energy, performance, and resource utilization metrics for edge computing architec-
tures where edge servers are hosted in the RAN such as [9], empowering researchers 
to design and assess new placement and energy-saving strategies.

3 � MintEDGE: multi‑tier simulator for energy‑aware strategies in edge 
computing

MintEDGE has been designed to cover a wide variety of practical use cases. In gen-
eral, any use case, regardless of its size, where there is an edge computing infra-
structure whose energy consumption can be optimized using different strategies. 
This usually happens when the workload changes during the day, with the infra-
structure being escalated to cope with the peak hours. MintEDGE allows testing 
the effects of dynamic resource allocation strategies, especially those designed to 
reduce the infrastructure’s energy consumption. Furthermore, MintEDGE facilitates 
the assessment of how these strategies impact the Quality of Service (QoS) of vari-
ous configurable services. Examples of this include smart cities offering vehicular 
safety services where MNOs want to save energy during off-peak hours when fewer 
resources are needed to attend to all the demand and private networks in large facto-
ries with multiple BSs or Access Points (APs) that offer critical safety services. Our 
design choices are detailed in the following subsection.

3.1 � Design choices

MintEDGE is designed to be inherently modular and versatile, empowering 
researchers to customize it to test different placement strategies and workload 

Table 1   Summary of simulators’ characteristics

Simulator Energy modeling Scalability Customizable mobility

EdgeCloudSim [5] No Bad No
iFogSim2 [6] End devices only Bad Yes
pFogSim [15] No Fair No
YAFS [16] No Fair No
PureEdgeSim [17] End devices only Good No
LEAF [7] Yes Good No
MintEDGE Yes Good Yes. Realistic traces. 

SUMO integration



12569

1 3

Energy‑focused simulation of edge computing architectures…

prediction experiments. Furthermore, to support large-scale realistic scenarios, 
MintEDGE is characterized by a light computational footprint, achieved through 
high levels of abstraction. MintEDGE is programmed in Python using SimPy and 
SUMO libraries as its core. While Python can be less memory efficient than other 
languages, such as C++, it can still be very optimized using slots and the correct 
external libraries. MintEDGE uses Python due to its ease of use and maintenance, 
especially due to its large ecosystem of libraries, especially when it comes to AI 
and ML, which can be a fundamental part of the strategies researchers can evaluate 
using MintEDGE. Moreover, Python facilitates working with big amounts of gener-
ated KPIs using data frames. In essence, MintEDGE has been designed with the fol-
lowing specific set of characteristics in mind:

•	 Modularity in the Orchestrator’s main tasks The orchestrator layer plays a piv-
otal role in providing a global network perspective, as it manages tasks such as 
service placement and request routing, resource allocation, telemetry data acqui-
sition, and workload forecasting (if needed). Its design focuses on making these 
modules interchangeable (as depicted in Fig. 1), with particular attention given 
to placement strategies and the workload prediction modules. This emphasis 
aligns with the objectives of MintEDGE, which are tailored to streamline the 
development of energy-efficient placement algorithms, typically involving proac-
tive strategies that incorporate workload predictors.

•	 Accountability for energy consumption Many of the state-of-the-art simula-
tors discussed in Sect. 2 primarily concentrate on IoT devices, which are often 
powered by batteries, and their energy consumption. In contrast, MintEDGE 
shifts its focus to the energy consumption associated with placement strate-

Fig. 1   MintEDGE’s architecture



12570	 B. Gómez et al.

1 3

gies. As a result, it accounts for the energy consumed by both colocated com-
puting resources within the network (represented by the edge servers) and the 
transport network, responsible for transmitting requests from wireless access 
points to the serving edge server. To model these aspects, MintEDGE builds 
upon the linear power model initially introduced in LEAF [7] and extends it 
to account for the booting energy of the edge servers. Further details of the 
energy model are provided below.

•	 RAN agnosticism By default, MintEDGE simulates a 5G infrastructure with a 
colocated edge computing deployment in which 5G Base Stations (BSs) also 
serve as hosts for the edge servers. Nonetheless, MintEDGE is designed to 
be RAN-agnostic. In practical terms, this means that alternative RAN tech-
nologies, such as Wi-Fi or different architectural frameworks, such as MEC, 
can be seamlessly incorporated into MintEDGE. While in a real implementa-
tion, moving from 5G to Wi-Fi would require big infrastructure changes, the 
complete abstraction of the RAN of MintEDGE makes it possible to do this 
with a few changes to the orchestrator. In its current version, the orchestrator 
also handles the government of the RAN. In Wi-Fi, it would act both as an 
orchestrator and SDN controller. This entity would be in charge of allocating 
resources on the edge infrastructure, the government of the transport network, 
and the Wi-Fi RAN. This versatile design not only enhances MintEDGE’s 
adaptability but also contributes to its efficiency by abstracting the complexi-
ties of RAN operations, allowing MintEDGE to accommodate larger-scale 
scenarios.

•	 Configuration flexibility MintEDGE offers complete configurability, enabling 
users to adjust various hardware parameters, including backhaul link capacity, 
edge server capacity, and service prerequisites such as delay budget or minimum 
capacity. This flexibility ensures that MintEDGE can be finely tuned to accom-
modate various hardware configurations and network scenarios. Moreover, 
MintEDGE allows fully configurable workloads, enabling the definition of user 
counts, their distribution over time or the request arrival rate for each service.

•	 Simulation of large-scale realistic scenarios MNOs frequently provide their ser-
vices over vast geographical areas, covering entire countries with millions of 
users. To ensure the scalability of their networks and mitigate the risk of sin-
gle points of failure, MNOs often deploy separate orchestrators (typically hosted 
at the Service Management and Orchestration (SMO) layer) to oversee different 
regions. Even within this framework, each Orchestrator can manage areas with 
tens of thousands of users. Consequently, MintEDGE is designed with a focus 
on efficiency, minimizing real-time computational demands without sacrificing 
memory usage.

•	 Realistic mobility modeling Network users typically exhibit non-random behav-
iors, often following discernible patterns, such as commuting between home and 
university, adhering to daily routines, and periods of rest. Therefore, the mobility 
model must be customizable to represent these patterns accurately. MintEDGE 
allows researchers and practitioners to use real mobility traces, which can be 
sourced from real-world data collection efforts or generated using various meth-
odologies such as those described in  [19]  and  [20]. Furthermore, MintEDGE 



12571

1 3

Energy‑focused simulation of edge computing architectures…

integrates with SUMO [10], enhancing the realism of users’ mobility even when 
using random routes, as SUMO incorporates its own micromobility models.2

3.2 � MintEDGE’s architecture

MintEDGE is designed to simulate a 5G RAN and edge computing, but its adaptable 
architecture makes it easily configurable for various RANs and architectures. In this 
section, we look at the specific components that make up the foundation of Mint-
EDGE. In essence, MintEDGE’s architectural framework, as shown in Fig. 1, com-
prises four fundamental blocks: Orchestrator, Infrastructure, Users, and Mobility.

3.2.1 � Orchestrator

The orchestrator layer plays a central role in MintEDGE, providing a global view of 
the simulated system. Users leverage this view to develop innovative service place-
ment and resource allocation strategies hosted and executed by the orchestrator. 
The orchestrator also handles, if required by the user, the control and execution of 
machine learning models for workload prediction, which is essential for evaluating 
proactive energy-saving approaches. The orchestrator can configure the infrastruc-
ture on the basis of these strategies’ output, aggregate telemetry data from the under-
lying infrastructure layers, and offer the option of storing this data for performance 
evaluation or feeding it to other components, including placement strategies and 
workload predictors. Additionally, the orchestrator includes the energy meter block, 
which is responsible for collecting data from the infrastructure’s energy models.

Note that the orchestrator hosts a Load Prediction module. By default, Mint-
EDGE provides an ideal predictor. Thanks to its flexible implementation in Python, 
researchers can inherit from this class to introduce their own predictors using any 
library or framework from the rich ecosystem available in Python, such as Scikit-
learn, TensorFlow, and Keras. This module can be disabled for those strategies that 
do not require the use of prediction.

3.2.2 � Infrastructure

The infrastructure layer is responsible for modelling the behavior of the infrastruc-
ture, encompassing both computing resources and network components. This effec-
tively manages requests originating from the users layer, simulating network and 
computing delays, managing user connections and request rejection according to 
hardware capacity and resource allocation, as well as the selected policy (FIFO by 
default). MintEDGE operates on the assumption that edge servers are colocated with 
the BSs. This design choice facilitates the exploration of diverse server-BS deploy-
ments and server placement algorithms. Furthermore, this concept can be extended 
to encompass other radio access points as needed. The modular architecture of 

2  Micromobility refers to each user and their dynamics individually. This includes the interaction of the 
user with the environment, e.g., cars stuck in traffic or waiting at traffic lights.



12572	 B. Gómez et al.

1 3

MintEDGE allows the seamless integration of energy models into any component 
of the infrastructure. By default, edge servers and backhaul links come with their 
energy models, but incorporating BSs or orchestrator models would be seamless if 
required by the user. Researchers can easily import real infrastructure data with BS 
location and their backhaul connections or generate random ones. The infrastruc-
ture hosts user-defined services. MintEDGE users need to define the arrival rate, 
the workload of a request, the input and output data volumes, and the maximum 
admissible delay for each defined service. The orchestrator defines the amount of 
resources that the infrastructure allocates to each one of these services according to 
the allocation strategy being evaluated.

By default, the infrastructure provides the orchestrator with telemetry information 
related to the energy consumption (idle, workload-caused and backhaul), server uti-
lization, average delay per service, maximum delay per service, number of requests 
over the maximum service delay, workload in requests per second (total and for each 
BS) and rejected requests per service and BS. These KPIs can be stored for evalu-
ation or used by the orchestrator to optimize resource allocation either for perfor-
mance or energy efficiency.

3.2.3 � Users

Within the users layer, individual users initiate requests for one or more services and 
send them to the connected BS. The request arrival rate depends on the requested 
service and follows an easily configurable distribution, with the default setting being 
Poisson. MintEDGE’s users can also configure the request arrival rate for each sim-
ulated service providing them with the ability to represent a big diversity of work-
loads and applications. Within this layer, various user types governed by distinct 
mobility models are available: vehicles (cars), pedestrians, and stationary users. 
These mobility models, detailed in the mobility layer description below, regulate 
how users navigate and interact with the simulated environment, granting each user 
type access to different applications or services.

3.2.4 � Mobility

When evaluating strategies or approaches reliant on workload prediction, the inclu-
sion of realistic mobility models is of paramount importance. In this regard, Mint-
EDGE seamlessly integrates with SUMO  [10], an open-source traffic simulator 
designed to create and simulate detailed and realistic traffic scenarios. SUMO mod-
els the movement of vehicles, pedestrians, and other forms of transportation within a 
specified road network. The integration of SUMO within the MintEDGE framework 
ensures user-friendliness, eliminating the need for users to understand the inner 
workings of SUMO. Through this integration, MintEDGE gains the ability to model 
the dynamics of each individual user comprehensively. This includes the interaction 
of the user with the environment, e.g., cars stuck in traffic or waiting for pedestrians 
to cross the road. To model the mobility of the simulation scenario, MintEDGE’s 
users need to create a road network. MintEDGE provides two ways of doing so: 



12573

1 3

Energy‑focused simulation of edge computing architectures…

	 (i)	 Real-world geographical coordinates: Researchers can specify the geographi-
cal coordinates by defining the real-world area to be evaluated. MintEDGE 
builds the SUMO road network automatically by using the OpenStreet-
Map API [21].

	 (ii)	 SUMO network file: Alternatively, MintEDGE users can provide a pre-existing 
SUMO network file, thus allowing more flexibility in the evaluation, whether 
representing a real-world scenario or a synthetic one.

We need to differentiate two types of mobility: macromobility and micromobility. 
Macromobility refers to the dynamics of traffic flows, i.e., how many users are there 
and where they are at each time of the day. The user of MintEDGE must provide this 
information as a crucial part of their evaluation scenario. MintEDGE’s users can 
provide macromobility information in two ways: 

	 (i)	 SUMO trace file: MintEDGE provides full control over both user count and 
user mobility. The framework accommodates the utilization of SUMO trace 
files, which record the routes followed by each user. There are two ways 
to obtain these traces: (1) Generate them synthetically from traffic count-
ing data from different points of the road network such as [22]. Different 
works have developed methods to transform this data into SUMO traces such 
as [19] and [20]. (2) Using real GPS data from mobile devices. SUMO pro-
vides tools to transform this data into a trace file. However, this last method 
tends to be more expensive, and the data are often not publicly available due 
to privacy concerns.

	 (ii)	 User traffic distribution: For those use cases where the accuracy of mobility 
is less critical or where a trace file is not available, MintEDGE presents an 
alternative option, enabling the utilization of random routes. In this mode, 
researchers only need to specify a constant user count or a user count distribu-
tion expressing the user count for each hour of the day. This feature streamlines 
the configuration for evaluations in which meticulous mobility modeling is 
not a primary concern.

Once macromobility dynamics have been provided by the user, MintEDGE uses 
SUMO to control micromobility, which refers to the movement of every single user 
in the scenario, assuming that their behavior depends on the users surrounding them, 
e.g., in a single-lane street, a car cannot go faster than the car immediately in front of 
it. SUMO’s micromobility model is detailed in [23].

3.3 � Network model

By default, MintEDGE considers a 5G RAN with a finite set of BSs, 
B = {BS1,… ,BSN} . The BSs are interconnected with each other and with the core 
network through a given set of links L . Each link � is identified by its source and des-
tination BSs and associated link capacity denoted by �i,j , which is configurable by the 
user. The orchestrator has access to the connectivity graph and the routing matrix Γ 



12574	 B. Gómez et al.

1 3

that determines the routing between two BSs. MintEDGE assumes that the link capac-
ity from BSi to BSj is equal to the capacity in the reverse direction. Hence, each link is 
represented as a three tuple: �i,j = ⟨BSi,BSj, �i,j⟩ . An example of a small network fol-
lowing this model is shown in Fig. 2. This cellular network has a colocated set of edge 
servers denoted by H . MintEDGE’s network model assumes that each edge server 
is associated with a BS, and MintEDGE’s users can decide what BSs have an edge 
server. The presence of an edge server at BSi is indicated by a binary variable ei . The 
maximum capacity in operations per second of an edge server hm ∈ H is denoted by 
Cmax
m

 , which is also configurable. Each edge server can accommodate a finite set A of 
computation services, e.g., vehicular safety or medical robotics. The orchestrator is in 
charge of allocating a specific capacity of each server to each service. Any user ui ∈ U 
can access the services deployed on any edge server through their serving BS and fol-
lowing the backhaul routes from this BS to the BS that hosts the target edge server. 
Each computing request ak ∈ A is characterized by a four tuple: ⟨ok,V in

k
,Vout

k
, Tmax

k
⟩ , 

where ok is the workload generated by the request, V in
k

 is the size of the input data, Vout

k
 

is the size of the outcome of the computation, and Tmax

k
 is the delay budget for the task. 

The four components of the tuple are configurable by the user. Requests to BSi for a 
particular service ak arrive at a service request rate �i,k , which is also configured by 
MintEDGE’s users. The resulting workload due to ak per unit time is given by ok�i,k.

The edge computing infrastructure is managed by the orchestrator layer, which 
also handles the government of the RAN and the transport network. At any given 
time, the orchestrator needs to assign computing requests to edge servers and assign 
network and computing resources to each service on the servers and the backhaul 
network, according to the placement and routing strategy introduced by MintEDGE’s 
users, which are the object of the evaluation. This can be done by configuring two 
matrices:

Fig. 2   Computing requests received by each BS are forwarded to the edge servers that will execute the 
computing task as determined by the orchestrator. In the above example, incoming requests received at 
BSi are forwarded to either BS

2
 or to BSj ’s edge servers



12575

1 3

Energy‑focused simulation of edge computing architectures…

•	 Placement matrix: Each element �i,k,j ∈ [0, 1] represents the fraction of requests 
for service ak received by BSi to be computed by an edge server hosted at BSj . 
When no requests are being sent to BSj , then �i,k,j = 0.

•	 Allocation matrix: Each element �k,j ∈ [0, 1] represents the fraction of computing 
capacity allocated for a service ak on edge server hj.

A greedy strategy that places each request on the closest server with free capacity 
is implemented by default. Moreover, we allow for the possibility of shutting down 
edge servers, so MintEDGE user-defined strategies can also configure an on/off sta-
tus variable, denoted by �j ∈ {0, 1} , where �i = 0 means that hj is off.

Another important part of the network model, especially in an edge computing 
environment, is the delay experienced, which consists of: (i) the time to upload a 
request and the input data to the serving BS ( Tu ); (ii) the time to route the request 
toward the serving edge server  (Tr ); (iii) the time to compute the response  (Tc ); 
(iv) the time to route the output back from the serving edge server to the serving 
BS (To ); and (v) the time to download the output from the serving BS (Td).

By default, MintEDGE provides a model that assumes that capacity constraints 
of servers and links are respected, and therefore it does not consider queuing delays. 
However, the design of MintEDGE makes it possible to seamlessly replace this 
model with more intricate ones. When the serving BS also hosts the serving edge 
server, Tr is 0, i.e., the request is not routed through the backhaul links. Let us now 
focus on how MintEDGE models each one of the components:

•	 Tu : With the data rate of the radio link at BSi , denoted by Ri , which can be 
obtained with Shannon–Hartley’s theorem, Tu

i,k
 is given by: 

•	 Tr : The backhaul routing time depends on the link capacity �o,p and the size of 
the request’s input V in

k
 . The backhaul latency can be calculated as the sum of the 

delays of all the links along the path3: 

 where po,p
i,j

 indicates whether �o,p is on the shortest path from BSi to BSj.
•	 Tc : The computing time of a request depends on the fraction �k,j of computing 

resources allocated to service ak on edge server hj and the total capacity 
Cmax

j
 of hj : 

(1)Tu
i,k

=
V in
k

Ri

[seconds].

(2)Tr
i,k,j

=
∑

�i,j∈L

V in
k
p
o,p

i,j

�o,p
,

3  Requests can experience queuing delays if the capacity limits of the links or the edge servers are 
exceeded. We assume node processing and propagation delays to be negligible.



12576	 B. Gómez et al.

1 3

The calculation of Td and To is performed in the same manner as that of Tu and Tr , 
respectively, but using the output data volume Vout instead of V in.

3.4 � Energy model

MintEDGE uses LEAF’s linear energy model and extends it to include booting 
energy consumption for a more realistic evaluation of strategies involving edge 
server shutdown and startup. According to this energy model and the network model 
explained above, the energy consumption can be divided into: (i) energy used by 
the edge servers to execute the computing requests; (ii) energy used by the links to 
route requests from the serving BS to the corresponding edge server; and (iii) energy 
consumed in the boot process when an edge server is shut down and then turned on.

3.4.1 � Edge servers’ energy

As mentioned above, an edge server hm ∈ H can perform Cmax
m

 operations per sec-
ond. When not performing user operations, it has a specific baseline energy con-
sumption, denoted by Eidle

m
 . Each operation executed on hm adds a certain energy, 

denoted by Em , that needs to be added on top of Eidle
m

 . By taking the request arrival 
rate �i,k at each BSi , the workload of a request ok and the fraction of assigned requests 
�i,k,m for service ak , the number of operations per second executed on an edge server 
hm due to ak is given by:

If we consider all the services, the total number of operations on hj can be calculated 
as:

With this, the power consumed by the set of edge servers that are active, i.e., �m = 1 , 
is given by:

This energy model strikes a good trade-off between simplicity and accuracy. As 
illustrated by real-world benchmarks such as [24], a linear increase of energy con-
sumption according to CPU occupation is a robust approximation to the actual con-
sumption, as shown in Fig. 3. While it is true that a better approximation could be 
obtained by adjusting the energy-per-operation values depending on different load 

(3)Tc
i,k

=
ok

𝛽k,jC
max

j

where 𝛾i,k,j > 0.

(4)Ok,j =
∑

BSi∈B

�i,k,jok�i,k ∀ak ∈ A.

(5)Oj =
∑

ak∈A

Ok,j.

(6)
∑

hm∈H

�m
(
Eidle

m
+ OmEm

)
.



12577

1 3

Energy‑focused simulation of edge computing architectures…

levels, the linear model strikes a good balance in terms of simplicity and accuracy, 
as shown in [7]. The linear model’s complexity is O(n) , where n is the number of 
servers in H . Each server calculates its energy consumption at every time slot and 
sends the value to the orchestrator, enabling the latter to compute the total consump-
tion of the servers by adding all the received values.

3.4.2 � Routing of the computing requests

Depending on the defined placement strategy, computing requests may not be 
attended to on the server hosted at the serving BS, e.g., the serving BS does not have 
an edge server, or the edge server’s capacity is full. Such situations result in addi-
tional energy consumption, as indicated in [7]. The energy consumption can be cal-
culated using a hardware-specific parameter �o,p that denotes the energy consump-
tion incurred when transmitting one bit through a particular link �o,p ∈ L (typically 
in J/bit). This parameter can be easily configured in MintEDGE. By considering 
both the computing input data volume ( V in

k
 ) and the corresponding output data vol-

ume ( Vout

k
 ), as well as the number of requests traversing each link, we can calculate 

the volume of the total data traversing a link as follows:

where po,p
i,j

 indicates whether �o,p is on the shortest path from BSi to BSj . Assuming 
that requests are always routed along the shortest path, this indicates whether the 
requests originating at BSi and routed to BSj (indicated by �i,k�i,k,j ) have to traverse 
�o,p . Consequently, with the data volume traversing a link �o,p in bits and its �o,p , the 
total energy consumed by the set of links L is given by:

Thanks to its modular design, other energy models, such as nonlinear dependency 
between data volume and transmission energy, can seamlessly be incorporated into 

(7)Vo,p =
∑

ak∈A

∑

BSi∈B

∑

BSj∈B

(
V in

k
+Vout

k

)
�i,k�i,k,jp

o,p

i,j
∀�o,p ∈ L,

(8)
∑

�o,p∈L

�o,pVo,p.

Fig. 3   Measured energy con-
sumption of an EPYC 8534P 
CPU [24] and its consumption 
according to the linear model



12578	 B. Gómez et al.

1 3

MintEDGE. At each time slot, each link calculates its energy consumption and 
sends the value to the orchestrator. The orchestrator can then calculate the total 
energy consumption of the backhaul by adding the consumption of each link. Thus, 
the complexity of the backhaul energy model is O(m) where m is the number of 
links in L.

3.4.3 � Boot process

Turning on edge servers also consumes energy, even if no user operation can be per-
formed during the boot process. Thus, MintEDGE accounts for this energy to facili-
tate the evaluation of strategies that involve turning off edge servers. An inactive 
edge server hm ∈ H takes a configurable setup time Ts

m
 before it is fully operational 

and ready to serve requests. During this setup time, the power consumption remains 
constant and is represented as Ps

m
 [25]. Therefore, the total power consumed during 

the edge server boot process is given by Eboot
m

= Ts
m
Ps
m
 . The boot energy is calculated 

by each server on the corresponding time slot and sent to the orchestrator along with 
the computing energy. Therefore, it does not add further complexity to the model.

4 � Evaluation

In this section, we evaluate the performance of MintEDGE using three distinct 
scenarios, which will vary in terms of geographical area and the number of users 
involved. By doing so, we can provide a comprehensive view of MintEDGE’s perfor-
mance and scalability and its ability to simulate various numbers of users and BSs.

4.1 � Scenarios and parameters

To show how MintEDGE scales, we chose three different scenarios based on the 
real data [26] for the infrastructure of a single MNO in 3 Dutch cities with different 
population sizes, namely Elburg, Maastricht and Utrecht. The number of BSs and 
users in each scenario is shown in Table 2. The number of users is calculated by 

Table 2   Simulation parameters Elburg Maastricht Utrecht

Number of BSs 27 41 76
Number of cars 375 2500 5700
Number of pedestrians 100 500 1400
Number of stationary users 20 100 280
Max. capacity ( Cmax , ops/s) 11260532
Idle consumption ( Eidle) 222 W
Max. consumption ( Emax) 696 W
Link capacity ( �) 10 Gbps
Link energy consumption ( �) 5.9 nJ/bit



12579

1 3

Energy‑focused simulation of edge computing architectures…

taking into account a 1% market penetration share for the augmented reality service 
and a 10% market penetration share for the vehicular safety service. In the case of 
the video analytics service, we consider 15 users (CCTV cameras) per km2 in Maas-
tricht and proportionally scale the number of users to match the population of the 
other two scenarios. Figure 4 displays the three scenarios, in which half of the BSs 

Table 3   Requirements of the services evaluated

Service type Max. delay 
(ms)

Arrival rate Input data Output data ops/s

Video analytics 30 6 1500 kB 20 B 30000
Augmented reality 15 0.5 1500 kB 25 kB 50000
Vehicular safety 5 10 1600 B 100 B 7000

Fig. 4   Map of the three selected scenarios with the position of the BSs. In green are the BSs that host an 
edge server, and in red are those that do not



12580	 B. Gómez et al.

1 3

are shown with green icons to indicate the presence of edge servers. All the edge 
servers have identical hardware, having a capacity of 11,260,532 operations per 
second, a baseline energy consumption of 222 W, and a maximum power limit of 
696 W [24]. From the maximum and idle energy consumption, the energy required 
per operation is given by Em = (Emax

m
− Eidle

m
)∕Cmax

m
 . Therefore, each operation 

requires 42.1�J . We assume that the BSs are connected through the X2 interface 
using 10 Gbps fiber optics links, whose layout is partially obtained from [26]. How-
ever, as this information is insufficient to connect all the BSs, some links have been 
added. We simulate three different latency-constrained computing services, each 
defined by its unique characteristics listed, as in Table 3. Throughout this evalua-
tion, we use MintEDGE’s random route functionality, adapting the number of users 
according to the scenarios outlined in Table 2. There are three kinds of users: cars, 
pedestrians, and stationary users. The first two follow a user count distribution as 
described in [27], with user activity ranging from 2% of active users at 06:00 to 16% 
at 21:00. The count of stationary users remains constant throughout the simulation. 
For each scenario, we conduct two sets of simulations, the first one generating func-
tional results and execution time data, while the second set involves a memory pro-
filer to measure the memory usage. We separate the two sets because the memory 
profiler introduces significant overhead that can affect the execution time. All the 
simulations were carried out on a 9-year-old PC equipped with an i5-4590T CPU 
running at 2 GHz and 16 GB of DDR3 RAM.

4.2 � Results discussion

MintEDGE provides detailed insights into the components contributing to total 
energy consumption, namely idle energy consumption (baseline energy consump-
tion of the servers), energy consumption during server workload, and backhaul 
energy consumption. We simulate a 24-hour period for each of the three cities. 
Figure  5 depicts the three energy consumption components and the total con-
sumption resulting from adding them together. In particular, Fig.  5a shows the 
energy consumption for Elburg, in which 83.6% corresponds to the idle energy 

Fig. 5   Energy consumption for each component in the three evaluated scenarios



12581

1 3

Energy‑focused simulation of edge computing architectures…

consumption, 5.8% to the backhaul consumption, and the remaining 10.6% cor-
responds to the workload energy. The idle energy consumption is the most sig-
nificant contributor to the total consumption due to the low number of users in 
this scenario. As the number of users increases, we observe a corresponding 
growth in workload energy consumption. This can be seen in Fig. 5b, where the 
workload energy consumption constitutes 25.9% of the total, with the idle and 
backhaul consumptions accounting for 60.8% and 13.3%, respectively. In the larg-
est scenario, as depicted in Fig.  5c, this effect is more pronounced, with work-
load energy comprising 32.4% of the total consumption, while idle and backhaul 
consumptions are 55% and 12.6%, respectively. As the scenario size increases, 
encompassing more users and base stations, energy consumption grows accord-
ingly, doubling from Fig. 5a to Fig. 5b and once again from Fig. 5b to c. In all 
three scenarios, idle energy consumption constitutes the most significant portion 
of the infrastructure’s total energy footprint, highlighting substantial optimization 
potential.

The average delay for each one of the services evaluated is shown in Fig. 6. In all 
three scenarios, an increase in the average delay is experienced during peak hours 
(around 21:00) for vehicular safety and augmented reality services due to higher net-
work load. On the contrary, the video analytics service has a constant delay as the 

Fig. 6   Delay experienced for each service type in the three evaluated scenarios

Fig. 7   MintEDGE performance in terms of memory usage and execution time



12582	 B. Gómez et al.

1 3

number of stationary users (the ones using this service) remains stable. The infra-
structure in Elburg could handle a higher load, as demonstrated by the low delay 
shown in Fig. 6a and the low portion of workload energy consumption (Fig. 5a).

The average execution time for the three evaluated scenarios is shown in Fig. 7a. 
The 24-hour simulation for Elburg took 35  min, for Maastricht, it took 2  h and 
53 min, and for Utrecht 13 h and 44 min. MintEDGE shows good scalability, with 
an acceleration against the real clock of 40 times in the smallest scenario (Elburg) 
and 1.7 times in the largest scenario (Utrecht). These promising results are achieved 
on a regular PC with an old CPU, showing the good performance and scalability 
of MintEDGE. Considering the three evaluated scenarios, the average acceleration 
against the real clock is 17 times. Another important factor with regards to scalabil-
ity is the use of RAM. The PC we used has 16GB of RAM, but none of the scenar-
ios comes close to using the whole capacity, with Elburg taking up 1.8 GB of RAM, 
Maastricht taking up 2.7 GB, and Utrecht taking up 5 GB, as shown in Fig. 7b.

5 � Conclusion

In this work, we have presented MintEDGE, a network simulator dedicated to study-
ing the energy consumption dynamics of edge computing. MintEDGE empowers 
researchers and practitioners to explore innovative strategies, such as task place-
ment algorithms, with the aim of reducing the energy footprint of the Edge infra-
structure. MintEDGE’s abstraction level allows it to simulate large-scale scenarios, 
and its design will enable researchers to fully customize mobility and test proactive 
approaches with workload predictors. The evaluation we performed demonstrates that 
MintEDGE can achieve a significant speed-up against the real clock, even when run-
ning on older user-oriented PCs. In the future, we plan to extend MintEDGE by intro-
ducing a higher level of parallelism in user processes to further boost its performance. 
We also plan to introduce easier configuration to architectural aspects of the network, 
such as supporting more than one server per BS, having servers not colocated at BSs, 
and different service arrival rate distributions. In addition, we plan to expand its capa-
bilities to generate synthetic mobility traces using only traffic counting data, and we 
aim to incorporate delay models to broaden MintEDGE’s applicability and utility.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. 
This work is part of the R&D project PID2021-123627OB-C52 funded by the Spanish Ministry of Sci-
ence and Innovation, Agencia Estatal de Investigación/10.13039/501100011033 and the European 
Regional Development Fund: “a way of making Europe.” This work is also part of the R&D project 
PID2022-142332OA-I00 funded by the Spanish Ministry of Science and Innovation, Agencia Estatal 
de Investigación/10.13039/501100011033 and the European Regional Development Fund: “a way of 
making Europe.” This work is also funded by the European Social Fund and Universidad de Castilla-
La Mancha under grant 2019-PREDUCLM-10921, the Government of Castilla-La Mancha under project 
SBPLY/21/180501/000195 and Universidad de Castilla-La Mancha under project 2023-GRIN-34056. 
This work is also supported by the European Union “NextGenerationEU/PRTR,” the Spanish Ministry 
of Science and Innovation, and Agencia Estatal de Investigación/10.13039/501100011033 under project 
IJC2020-043058-I.



12583

1 3

Energy‑focused simulation of edge computing architectures…

Data Availability  The code used in this work is available at https://​github.​com/​blasf1/​MintE​DGE. All 
data generated or analyzed during this study are included in this article.

Declarations 

Ethical approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 The decadal plan for semiconductors a pivotal roadmap outlining research priorities. Technical 
Report, Semiconductor Research Corporation (2021). https://​www.​src.​org/​about/​decad​al-​plan/ 
Accessed 31 Aug 2023

	 2.	 Energy-efficient cloud computing technologies and policies for an eco-friendly cloud market (2020). 
https://​digit​al-​strat​egy.​ec.​europa.​eu/​en/​libra​ry/​energy-​effic​ient-​cloud-​compu​ting-​techn​ologi​es-​and-​
polic​ies-​eco-​frien​dly-​cloud-​market Accessed 31 Aug 2023

	 3.	 Perin G, Berno M, Erseghe T, Rossi M (2022) Towards sustainable edge computing through renew-
able energy resources and online, distributed and predictive scheduling. IEEE Trans Netw Serv 
Manag 19(1):306–321. https://​doi.​org/​10.​1109/​TNSM.​2021.​31127​96

	 4.	 Jacob R, Vanbever L (2022) The internet of tomorrow must sleep more and grow old. In: Workshop 
on Sustainable Computer Systems Design and Implementation (HotCarbon 2022), La Jolla, CA, 
USA

	 5.	 Sonmez C, Ozgovde A, Ersoy C (2017) EdgeCloudSim: an environment for performance evaluation 
of edge computing systems. In: Proceedings of International Conference on Fog and Mobile Edge 
Computing (FMEC), Valencia, Spain. https://​doi.​org/​10.​1109/​FMEC.​2017.​79464​05

	 6.	 Mahmud R, Pallewatta S, Goudarzi M, Buyya R (2022) iFogSim2: an extended iFogSim simulator 
for mobility, clustering, and microservice management in edge and fog computing environments. J 
Syst Softw 190:111351. https://​doi.​org/​10.​1016/j.​jss.​2022.​111351

	 7.	 Wiesner P, Thamsen L (2021) LEAF: simulating large energy-aware fog computing environments. 
In: Proceedings of IEEE International Conference on Fog and Edge Computing (ICFEC), Mel-
bourne, Australia. https://​doi.​org/​10.​1109/​ICFEC​51620.​2021.​00012

	 8.	 Gómez B, Bayhan S, Coronado E, Villalón J, Garrido A (2023) MintEDGE: Multi-Tier SImulator 
for ENergy-Aware STrategies in Edge Computing. In: Proceedings of the ACM Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom), Madrid, Spain. https://​doi.​
org/​10.​1145/​35703​61.​36157​27

	 9.	 ETSI: MEC 003-V3.1.1-Multi-access Edge Computing (MEC) (2022) Framework and Reference 
Architecture 1: 1–29

	10.	 Alvarez  Lopez P, Behrisch M, Bieker-Walz L, Erdmann J, Flötteröd Y-P, Hilbrich R, Lücken L, 
Rummel J, Wagner P, Wießner E (2018) Microscopic Traffic Simulation using SUMO. In: Proceed-
ings of IEEE Intelligent Transportation Systems Conference (ITSC), Maui, Hawaii, USA. https://​
doi.​org/​10.​1109/​ITSC.​2018.​85699​38

	11.	 Riley GF, Henderson TR (2010) The ns-3 Network Simulator, pp 15–34. Springer, Berlin, Heidel-
berg. https://​doi.​org/​10.​1007/​978-3-​642-​12331-3_2

	12.	 Varga A, Hornig R (2008) An overview of the OMNeT++ simulation environment. In: Proceedings 
of International ICST Conference on Simulation Tools and Techniques for Communications, Net-
works and Systems, Marseille, France, p 60. https://​doi.​org/​10.​1145/​14162​22.​14162​90

https://github.com/blasf1/MintEDGE
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.src.org/about/decadal-plan/
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://doi.org/10.1109/TNSM.2021.3112796
https://doi.org/10.1109/FMEC.2017.7946405
https://doi.org/10.1016/j.jss.2022.111351
https://doi.org/10.1109/ICFEC51620.2021.00012
https://doi.org/10.1145/3570361.3615727
https://doi.org/10.1145/3570361.3615727
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1145/1416222.1416290


12584	 B. Gómez et al.

1 3

	13.	 Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R (2011) CloudSim: a toolkit for 
modeling and simulation of cloud computing environments and evaluation of resource provisioning 
algorithms. Softw Pract Exp 41(1):23–50. https://​doi.​org/​10.​1002/​spe.​995

	14.	 Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R (2017) iFogSim: a toolkit for modeling and simu-
lation of resource management techniques in the Internet of Things, Edge and Fog computing envi-
ronments. Softw Pract Exp 47(9):1275–1296. https://​doi.​org/​10.​1002/​spe.​2509

	15.	 Wang Q (2019) PFogSim: A Simulator for Evaluating Dynamic and Layered Fog Computing Envi-
ronments. PhD thesis, Auburn University

	16.	 Lera I, Guerrero C, Juiz C (2019) YAFS: a simulator for IoT scenarios in fog computing. IEEE 
Access 7:91745–91758. https://​doi.​org/​10.​1109/​ACCESS.​2019.​29278​95

	17.	 Mechalikh C, Taktak H, Moussa F (2021) PureEdgeSim: a simulation framework for performance 
evaluation of cloud, edge and mist computing environments. Comput Sci Inf Syst 18(1):43–66. 
https://​doi.​org/​10.​2298/​CSIS2​00301​042M

	18.	 Brogi A, Forti S, Ibrahim A (2019) 9. Predictive analysis to support fog application deployment, pp 
191–221. Wiley, New York, US. https://​doi.​org/​10.​1002/​97811​19525​080.​ch9

	19.	 Uppoor S, Trullols-Cruces O, Fiore M, Barcelo-Ordinas JM (2014) Generation and analysis of a 
large-scale urban vehicular mobility dataset. IEEE Trans Mob Comput 13(5):1061–1075. https://​
doi.​org/​10.​1109/​TMC.​2013.​27

	20.	 Pigné Y, Danoy G, Bouvry P (2011) A vehicular mobility model based on real traffic counting data. 
In: Proceedings of Communication Technologies for Vehicles, Oberpfaffenhofen, Germany, pp 131–
142. https://​doi.​org/​10.​1007/​978-3-​642-​19786-4_​12

	21.	 API - OpenStreetMap Wiki. https://​wiki.​opens​treet​map.​org/​wiki/​API Accessed 25 Aug 2023
	22.	 Government of Luxembourg: Portail des Travaux publics. Comptage du trafic. https://​trava​ux.​pub-

lic.​lu/​fr/​infos-​trafic/​compt​age.​html Accessed 25 Dec 2023
	23.	 Lopez PA, Behrisch M, Bieker-Walz L, Erdmann J, Flötteröd Y-P, Hilbrich R, Lücken L, Rummel 

J, Wagner P, Wiessner E (2018) Microscopic Traffic Simulation using SUMO. In: Proceedings of 
IEEE International Conference on Intelligent Transportation Systems (ITSC), Maui, Hawaii, USA, 
pp 2575–2582 . https://​doi.​org/​10.​1109/​ITSC.​2018.​85699​38

	24.	 Standard Performance Evaluation Corporation: SPECpower results. https://​www.​spec.​org/​power_​
ssj20​08/​resul​ts/ Accessed 25 Aug 2023

	25.	 Gandhi A (2013) Dynamic server provisioning for data center power management. PhD thesis, Car-
negie Mellon University

	26.	 Antennekaart. https://​anten​nekaa​rt.​nl Accessed 25 Aug 2023
	27.	 METIS-II Mobile and Wireless Communications Enablers for Twenty–Twenty Information Society 

II (2020). https://​metis-​ii.​5g-​ppp.​eu/ Accessed 25 Aug 2023

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1002/spe.995
https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/ACCESS.2019.2927895
https://doi.org/10.2298/CSIS200301042M
https://doi.org/10.1002/9781119525080.ch9
https://doi.org/10.1109/TMC.2013.27
https://doi.org/10.1109/TMC.2013.27
https://doi.org/10.1007/978-3-642-19786-4_12
https://wiki.openstreetmap.org/wiki/API
https://travaux.public.lu/fr/infos-trafic/comptage.html
https://travaux.public.lu/fr/infos-trafic/comptage.html
https://doi.org/10.1109/ITSC.2018.8569938
https://www.spec.org/power_ssj2008/results/
https://www.spec.org/power_ssj2008/results/
https://antennekaart.nl
https://metis-ii.5g-ppp.eu/

	Energy-focused simulation of edge computing architectures in 5G networks
	Abstract
	1 Introduction
	2 Related work
	3 MintEDGE: multi-tier simulator for energy-aware strategies in edge computing
	3.1 Design choices
	3.2 MintEDGE’s architecture
	3.2.1 Orchestrator
	3.2.2 Infrastructure
	3.2.3 Users
	3.2.4 Mobility

	3.3 Network model
	3.4 Energy model
	3.4.1 Edge servers’ energy
	3.4.2 Routing of the computing requests
	3.4.3 Boot process


	4 Evaluation
	4.1 Scenarios and parameters
	4.2 Results discussion

	5 Conclusion
	References




