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Abstract—Multi-access Edge Computing (MEC) is regarded
as a pivotal pillar to grasp the particularized 5G goals by
shifting network intelligence from the cloud to the edge. Network
Function Virtualization (NFV) emerged as a paradigm intending
to replace traditional vendor-specific network appliances with
software instances of the network functions capable of running
on standard devices. Recently, deploying softwarized network
functions at the network edge has gained an unprecedented
attention. Multiple virtualization technologies can be utilized to
deploy virtualized network functions including Virtual Machines
(VMs), containers, and unikernels. However, each virtualization
platform has specific advantages and disadvantages, which makes
worthy studying their real performance. This is specially impor-
tant when it comes to implement network functions at the edge
of 5G networks, where resources are scarce and quick response
to user requests is needed. In this regard, this paper studies
the performance of virtualization technologies by deploying two
services namely Apache and Redis and provides an extensive
experimental campaign and conclusive results.

Index Terms—5G, Multi-access Edge Computing, Virtualiza-
tion, VMs, Containers, Unikernels

I. INTRODUCTION

While 4G LTE networks are present in daily communi-
cations, ranging from calls to Internet surfing, future 5G
systems are already a reality. Comparing to its predecessor,
5G promises significantly higher data rate, ultra-low latency,
and improved Quality of Service (QoS). In fact, numerous ap-
plications like Virtual Reality (VR), autonomous driving, and
Internet of Things (IoT) benefit from the eye-catching advan-
tages of 5G networks. Nevertheless, this pervasive connected
world requires to handle real-time massive amounts of data
from users and applications. So far, this processing burden has
been shifted to resource-rich cloud data centres [1]. However,
transmitting data to/from the cloud induces significant delay.
This issue can be addressed by setting the resources closer to
the user and implement them at Network Points-of-Presence
(N-PoP) sites. This paradigm known as Multi-access Edge
Computing (MEC) decreases network latency and bandwidth
consumption and prevents from single point of failure, hence
providing better user experience [2].

Network Function Virtualization (NFV) has attracted con-
siderable attention from network operators in the transition
from 4G to 5G networks. NFV encourages a more scalable,
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agile, and inexpensive network by decoupling network func-
tions from the underlying hardware and implementing them
in the form of software instances called Virtual Network
Functions (VNFs). Until now, network operators leveraged
cloud computing for deploying network functions as a way to
avoid investing a huge amount of money on dedicated devices.
However, MEC allows them not only to host their own desired
network functions but also to be prepared to host third parties
services, making a new revenue stream [3].

Traditionally, Virtual Machines (VMs) were the main tech-
nology for VNF deployment, providing full-featured and iso-
lated environments but with a huge overhead on the system.
Recently, containers have emerged as a promising solution to
replace heavy-weight and resource hungry VMs that are very
costly to migrate and scale. Containers encapsulate applica-
tions and their dependencies in a light-weight, highly-portable,
and executable entity, able to run on different platforms [4].
However, they face security vulnerabilities caused by sharing
the Operating System (OS) kernel between all the containers in
the host [5]. Similarly, unikernel technology has also absorbed
considerable attention from research community. Unikernels
are light-weight machine images aiming at reducing memory
footprint and image size of applications by integrating appli-
cation code and its dependencies into a single bootable binary
images [6].

The substantial benefits of virtualization technologies have
led Telecommunication Service Providers (TSPs) to choose
them as a solution for service deployment. Nevertheless, they
can dramatically impact the performance of applications, as
well as the agility and scalability of resource-scarce deploy-
ments. For that reason, if virtualization technologies are to
be applied to 5G networks, it becomes of vital importance to
analyse the capabilities that they can provide. Although studies
in this respect have been done in the past, many focus on a
subset of the platforms [7], [8], or do not consider the most
determinant indicators in resource-scarce scenarios [9]. To
the extent of our knowledge, a direct performance evaluation
across the three main virtualization technologies for VNF
deployment, i.e. VMs, containers and unikernels, covering
various networking aspects has not been performed before.
In particular, in this paper we discuss and compare the
performance of the aforementioned technologies by deploying
two network services, namely Redis and Apache HTTP, as
platforms enabling VNF deployment in 5G networks.978-1-5386-9376-6/19/$31.00 ©2019 IEEE



The rest of the paper structured as follows. Section II
overviews the studies performed on virtualization technolo-
gies, followed by an in-depth description of each technology
in Sec. III. Section IV presents the system setup, and discusses
the results of the experimental campaign. Finally, we draw our
conclusions and present the future work in Sec. V.

II. RELATED WORK

This section reviews the efforts made on assessing the exist-
ing virtualization technologies for VNF deployment. While the
majority of the literature has chosen Mirage [10], OSv [11],
and Rumprun [12], [13] for unikenrel construction, Docker
and LXC are the mainstream for container management.
Similarly, since KVM is the native hypervisor of Linux, it
is the preferred option of the works presented in this section
for VM deployment.

OpenStack [14] has been widely used for service provi-
sioning. In this regard, the work presented in [9] investigates
the service provisioning time of utilizing different virtual-
ization systems including containers, unikernels, and virtual
machines. The authors compare the provisioning time of
OSv unikernels against Docker containers and KVM virtual
machines. The main intention of the work is to analyze the
impact of executing concurrent services on the provisioning
time of the services.

The study presented in [8] conducts a deep analysis of the
performance of containers against unikernels for REST ser-
vices with different languages including Java, Go, and Python.
They evaluate the execution time and memory footprint for
the REST services implemented in OSv and Docker across
all the languages. Moreover, the impact of using single-thread
and multi-thread processes is also investigated. Another work
in [16] extends the experiments domain by involving multiple
platforms for each container, unikernel and VM. Authors study
the memory footprint and throughput of Nginx and Redis key-
value store on OSv and Rumprun for unikenrels, LXD and
Docker for containers and KVM for virtual machines.

As opposed to other works, this paper performs a deep
study on the performance evaluation of three main enabling
technologies for VNF deployment. We investigate the perfor-
mance of Apache HTTP service and Redis key-value store on
three different virtualization systems. Our work, is different
from the others since we study the performance of services
with different network and computing demands. We tried to
make minimum changes to the applications and select an
unikernel solution that supports POSIX applications. Contrary
to some works that compare the services developed in dif-
ferent programming languages, this work keeps the applica-
tion unchanged for different virtualization systems since the
programming language used for the application development
greatly impacts the overall performance of the application. We
aim to conduct a fair evaluation completely focused on the
virtualization capabilities.

III. BACKGROUND ON VIRTUALIZATION TECHNOLOGIES

This section presents an overview on different virtualization
technologies currently being used in the cloud and at the
edge to run multiple applications on the same underlying
server while keeping them isolated. The objective of all the
virtualization technologies is to break up the bulk physical
resources into smaller instances allocated to different users
or aggregating resources on different servers to provide a
common view of the pool of resources that can be assigned
or released dynamically.

Hypervisor-based virtualization is the main technology to
provide isolated environments on top of a shared pool of
resources. Hypervisor is a software layer that abstracts the
underlying physical resources and provides virtual machines
with full functionalities of a real system. Hypervisors are
classified into (i) Hypervisor Type-1: as depicted in Figure 1
the hypervisor is directly installed on the bare-metal hardware,
providing better performance by eliminating the need for the
host OS. KVM, Xen, and HyperV are examples of Type-1
hypervisor. (ii) Hypervisor Type-2: as shown in the Figure 1
the hypervisor is installed as an application on top of the
operating system. The installation is simple but generates
more overhead than the Type-1. VirtualBox and VMWare
Workstation are examples of this type of virtualization.

Currently, employing VMs for VNF deployment is the main
trend in the cloud. VMs provide a good level of security for the
applications due to the solid isolation that happens at the hard-
ware level. Usually general purposed operating systems are
installed inside VMs to run applications, which makes them
heavyweight instances that consume a considerable amount of
resources. This, also makes the instantiation time, migration
and scaling very costly.

As noticed, the main predicament with the VM is the bulky
size of the OS, which is intentionally designed generic to meet
the needs of users with different application scenarios. The
principal inclination in the cloud is to use general-purposed
OSes and assign each VM to run a single service, which
results in large size OSes with the full list of features that
are mostly unusable for the service. Unikernels are completely
opposed to the monolithic approach of OS design and emerged
as a solution to provide OS services and features including
the networking stack, memory access, and scheduling in the
form of libraries to construct light-weight, single-purpose, and
secure virtual machine images. As it can be perceived from
Figure 1, unikernels are extremely light-weight, eliminating all
the OS services, features, and libraries that are not required
for running an application. Regarding the limited OS libraries
that are used for each application, the attack surface shrinks
significantly that leads to better security levels. Unikernel ap-
proach allows to run only one application inside each unikernel
instance and cannot be expanded after construction [10].

Since the introduction of Mirage as the first platform
for constructing unikernels, many other platforms such as
Light-weight Virtual Machine (HaLVM) [17], IncludeOS [18],
OSv [19], and Rumprun [12] have emerged but few of them
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Fig. 1. High-level comparison between virtualization technologies.

gained attention. Rumprun is different from other solutions, in
the sense that device drivers that constitute the majority of the
code lines of an unikernel can be deployed in the user-space.
By this approach, crashes in drivers do not lead to the failure
of the whole VM. Rumprun employs NetBSD [20] kernel
drivers to support application execution. POSIX applications
can be easily ported to Rumprun unikernel without imposing
any changes to the application. Moreover, it supports different
platforms including KVM, Xen, and bare-metal platforms
supported by NetBSD.

Containerization is another virtualization approach that has
gained attention, in which virtualization happens at the host
level and provides isolated environments for applications as
depicted in Figure 1. Containers are lightweight and portable
application instances containing the libraries and dependencies
required for the application. Linux by default has namespaces
and cgroups features, which gives the ability to create isolated
environments and limiting the access of each application to
the shared resources, respectively. Being small-size, agile, and
scalable are some features of containers that make them a
greatly used technology for VNF deployment. Security vulner-
abilities originating from the shared kernel is the main predica-
ment with the container technology. Multiple container engines
have been introduced for simplifying creation, running, and
termination of containers, among which LXC, Docker, and
rkt have gained more reputation.

IV. PERFORMANCE EVALUATION

This section provides comprehensive details about the
methodology followed for the performance evaluation, includ-
ing the Key Performance Indicators (KPIs) considered. Then
we provide a description of the services we have implemented
in three different virtualization platforms. Moreover, we de-
scribe the results produced by various experiments performed
on each service.

A. System Setup

The system setup comprises an Intel NUC device equipped
with a Kingston SODIMM DDR4 RAM with 16GB capacity
and an Intel(R) Core(TM) i7-7567U CPU with 3.50GHz clock
rate. Ubuntu 18.04.1 LTS is utilized as the host OS for all the
platforms. The experiments for each deployment is performed
independently. Regarding the need of VM and unikernel

scenarios for a hypervisor, Qemu alongside KVM is used
to achieve a near-native performance for virtual machines.
Furthermore, Docker container engine (version 18.06.1-ce) is
utilized for running containers on the system.

The communication between containers and the host operat-
ing system is established through Docker’s default (Docker0).
Moreover, the guest OS of virtual machines, as well as
unikernels, are connected to the host operating system through
Linux default bridge and a static IP address that is assigned
to veth pairs. The evaluated services are executed in order and
independently from each other in all the platforms.

B. Methodology

Our evaluations examine the performance of two services
namely Apache Hyper Text Transport Protocols (HTTP) server
and Redis key-value store on three different platforms: VMs,
containers, and unikernels. The main objective is to reach an
understanding on the impact of virtualization platforms on the
performance of the service and clarify the pros and cons of
each platform.

Aiming at studying the impact of the virtualization tech-
nologies and the real performance of the services, as well
as discovering the limitations of the platforms, Memtier-
benchmark [21] and ab (Apache HTTP server benchmarking
tool) [22] benchmarking tools are employed. Both benchmark-
ing tools are installed on the host operating system to send
requests to the servers and collecting results of the experiment.

Apache is a cross-platform open-source HTTP server re-
sponsible for managing web pages in an efficient manner. It
is a fast, secure and reliable web server, known to be the
most widely used on the Internet. Many factors such as design,
usability, and web page content are critical for the success of a
website but the most important factor is the real performance
of the web server. Therefore, evaluating such performance
becomes an integral part of the deployment.

We evaluate the performance of the Apache HTTP server
based on different KPIs. First, we evaluate the image size of
the service in three different platforms to see the amount of
storage required to host the application. Next, we analyze the
CPU and memory utilization of the service, which has a great
impact on the number of services that a physical server can
run simultaneously. Linux top command is employed for VM



and unikernel deployments alongside Docker status command
in container deployments.

Delay in responding to user requests can drastically degrade
the user’s satisfaction from a website. A considerable portion
of the overall delay depends on the server’s performance in
responding to the requests. First, we analyze the delay in the
HTTP server by varying the number of requests to the server.
In this regard, we increase the number of requests in each step
from 100 to 30000 and repeat the experiments for 10 times.
Second, we keep the number of requests unchanged and repeat
the tests to measure the transfer rate of the HTTP server.

Redis is a data structure server employed for storing dif-
ferent type of values. Redis can be used for storing data,
caching data, or simply as a message broker. Similar to
Apache, Redis server is deployed in three different platforms.
Memtier-benchmark is a tool capable of generating different
traffic patterns to evaluate the performance of the Redis server.
Memtier-benchmark has the ability to generate traffic for
multi-thread and multi-client scenarios. It provides different
options to be configured for benchmarking Redis service like
the number of requests per each client and data size to examine
the performance in different situations.

In the first two experiments, image size and memory con-
sumption of the service is analyzed. The third KPI is the CPU
utilization performed in two different scenarios. One examines
the CPU utilization when the service is running and does not
serve any request from the user, and the other employs the
benchmarking tool to configure 50 clients and send 10000
requests per client to assess the impact of the requests on the
service. The experiments are repeated 10 times.

Regarding the importance of the latency in storing and
retrieving data, we examine the latency performance of Redis
server with different traffic patterns. The latency is calculated
as the maximum latency from the time that a client issues
the request to the server until the time the reply is received
by the client. In the first scenario, we examine the impact of
increasing the number of requests per client. The data size is
fixed and it is considered to be 32KBytes for all the requests.
We repeated the experiments 10 times for each request number,
which varies from 100 to 30000. In another experiment, the
data size is increased from 16 to 512 KBytes, while the number
of requests is fixed to 1000 per client.

C. Results

This section illustrates the results acquired from the exper-
iments. First, we investigate the image size of the services
implemented in different platforms, in this respect, the values
obtained are shown in Table IV-C. Given the architecture of the
various technologies the image size of Rumprun unikernels for
both services are significantly lower than other platforms. The
main reason comes from the fact that unikernels just contain
the dependencies required to run the application and remove
all other libraries and binaries necessary for running the
application. Contrary to the unikernels, applications running
in containers require the normal operating system operations,
which are provided by Ubuntu OS for both applications.

TABLE I
IMAGE SIZE OF THE SERVICES DEPLOYED IN DIFFERENT PLATFORMS

Service Name Rumprun Unikernel Container VM
Apache 6.6 MB 115 MB 14.6 GB
Redis 3.7 MB 101 MB 14.5 GB
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Fig. 2. Memory utilization of Redis and Apache HTTP services running in
different virtualization environments.
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The Ubuntu OS image size is 88.1 MB and the rest of the
size remain for the application and dependencies. Obviously,
VMs are not comparable with other platforms because of the
general-purpose OS that is running inside the VMs and it
reaches about 15 GB with minimal utility installation.

As illustrated in Figure 2 the memory usage of containers is
much less than Rumprun unikernel and VMs. The main reason
is the efficient and dynamic usage of memory done by con-
tainers, which is opposed to the fixed size memory allocation
in Rumprun unikernels. Although VMs dynamically use the
memory, due to the huge number of services running on the
general-purpose OS they cannot compete with containers.

Regarding the importance of CPU utilization of each service
on the overall performance of the system, Figure 4 depicts
the CPU utilization of both services running on different
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platforms. However as sketched in Figure 3, the CPU utiliza-
tion of the services is very low in idle mode, it increases
drastically when requests are destined at the service, espe-
cially for Rumprun unikernels. Apart from that, unikernels
and VMs employ a hypervisor layer (KVM + Qemu in our
case) that uses the acceleration methods to speed up running
applications, which in return add some extra processing to the
system. The confidence interval for all the plotted results is
set to 0.95.

The services studied in this paper have different demands
in terms of memory and CPU usage, therefore considering
them separately and study their performance can help to better
understand the advantages and limitations of the services on
different virtualization environments. First, we examine the
average latency of SET and GET operations in Redis server. To
this end, the number of requests sent to the server is increased
and data size is fixed to 32 KBytes. As it can be inferred
from Figure 5, increasing the number of requests does not
affect the server’s performance, while the Rumprun unikernels
perform poorly comparing to containers and VMs. Second, the
impact of data size is studied by generating 1000 requests and
increasing the packet size of the requests ranging from 16
to 512 KBytes. Although the delay increases slightly while
increasing data size of packets, the virtualization platform’s
performance remains similar to the first case. This effect is
shown in Figure 6.

Similar to the Redis server, we conducted some experiments
on the Apache HTTP server to evaluate the behavior of the
application on the different technologies from different points
of views. We aim to evaluate the service in terms of the
time required to serve each request and the transfer rate of
the server. As depicted in Figure 7 the time per request
for the Rumprun unikernels is very high and growing by
the increment in the number of generated requests, which is
mostly because of the poor process management in which
fork() and execve() system calls for making child processes
are not supported and no other process will be created to
handle the requests. Therefore, the delay for serving requests
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Fig. 6. Redis server latency for 1000 requests vs increasing packet data size.

increases in unikernels, while containers and VMs can make
child process and concurrently serve requests to increase the
performance. The same experiments are performed to evaluate
the transfer rate of the service. As it is expected from the
previous results, Rumprun performs poorly and has a lower
transfer rate. In Figure 8 it can be observed that the transfer
rate of Rumprun unikernels is much lower than containers but
comparable to VMs.

V. CONCLUSION

This paper contributed a comprehensive study on three
virtualization environments namely containers, unikernels, and
VMs. To do this, we implemented Redis and Apache services
alongside three virtualization systems and evaluate different
KPIs. While unikernels have a smaller image size and very
small memory consumption, the time required for process
completion is increasing mainly due to the inefficient memory
management and the hypervisor overhead. Containers are
also very light-weight both for memory and CPU utiliza-
tion but they perform well for both services. The process
management is more efficient comparing to unikernels and
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the overhead produced by the hypervisor is eliminated. The
performance of VMs is compatible with containers except
for the memory and CPU consumption, caused by the high
number of services running in background. In fact, although
containers and VMs showed a stable performance comparing
to the Rumprun unikernel for both services, we can claim
that actual performance of unikernels can be achieved by
selecting the proper application as well as the proper platform
for constructing the unikernel. Applications with high context
switching between user and kernel mode can perform better
when deployed as unikernels because unikernels eliminate
the overhead of context switching by only presenting one
execution mode, which is the privileged mode. Regarding the
obtained results, in the future works we are going to choose
among the virtualization systems to deploy VNFs at the cloud
or at the edge.
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