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∗High-Performance Networks and Architectures (RAAP). University of Castilla–La Mancha, Albacete, Spain

Email: {Estefania.Coronado, JoseMiguel.Villalon, Antonio.Garrido}@uclm.es
‡FBK CREATE-NET, Trento, Italy

Email: rriggio@fbk.eu

Abstract—Current 802.11–based WLANs are asked to support
an ever increasing number of services and applications, each of
them characterized by a diverse set of requirements in terms
of bitrate, latency, and reliability. Network virtualization and
programmability are two emerging trends that can support
the realization of such a vision in a cost–effective fashion. In
this paper we introduce Lasagna, a novel end–to–end solution
that enables flexible management of slices encompassing both
the wired and the wireless segments of an Enterprise WLAN.
Lasagna allows flexible management of network slices to meet
their respective service requirements. An experimental evaluation
carried out over a real–world testbed shows that Lasagna
can ensure both functional and performance isolation between
the different slices and efficient radio resource utilization. We
release the entire implementation including the controller and
the datapath under a permissive license for academic use.

Index Terms—Network Virtualization, Slicing, Software De-
fined Networking, WLANs, IEEE 802.11.

I. INTRODUCTION

Users and applications have different performance require-
ments in terms of bandwidth, latency, and data rate. This calls
for a service–oriented approach for network resource provi-
sioning. For example, ITU identifies three classes of services,
namely enhanced mobile broadband, massive machine type
communications, and ultra–reliable and low latency commu-
nications [1]. While the ITU white paper addresses specifically
5G networks, it is widely acknowledged that such networks
will heavily rely on Wi–Fi as traffic offloading solution. As
a matter of fact, it is expected that Wi–Fi and mobile traffic
will account for 63% of the entire IP traffic by 2021 [2].

Even just for the Wi–Fi segment, a single rigid network
architecture will not be enough to support the diverse and
dynamic set of services and applications that will charac-
terize future 5G mobile systems. Conversely, to make the
service–oriented 5G vision become a reality, it is mandatory to
abstract the physical network into multiple end–to–end virtual
logical networks or slices, one for each service category.
Software–Defined Networking (SDN) and Network Function
Virtualization (NFV) are considered to be two of the most
promising technological enablers for achieving this vision.
However, while several proposals have been put forward for
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the mobile core [3], [4], [5], [6], the concept is still at its
infancy in the radio access segment.

In this paper we present a programmable end–to–end net-
work slicing framework for WLANs. This framework pursues
three objectives: (i) programmability, we want to allow net-
work administrators to specify how a precise portion of the
flowspace shall be treated in the wireless access segment;
(ii) isolation, we want to make sure that slices are kept
isolated from the logical and the performance standpoints; and
(iii) customization, we want to allow each slice to specify its
own traffic prioritization policies, e.g. in terms of aggregation,
rate selection, etc. Notice how while the IEEE 802.11e amend-
ment [7] did introduce the concept of traffic differentiation
and prioritized access, it did not provide any programming
abstraction to allow end–to–end slice management. Similarly,
the de–facto standard for SDN in wired networks, i.e. Open-
Flow [8], does not encompass the wireless access segment.

Taking this into consideration, the contribution of this paper
is threefold. First, we extend the OpenFlow match rule with
some fields from the IEEE 802.11 header. Second, based on
this extended match rule, we introduce a new programming ab-
straction named Traffic Rule enabling the specification of cus-
tomized slicing policies for a precise portion of the flowspace.
Finally, we implement a flexible hypervisor capable of ensur-
ing the required logical and performance isolation between
slices while at the same time enabling slice customization
and efficient radio resource utilization. The proposed system,
named Lasagna, has been implemented and tested on top of
the 5G–EmPOWER Software–Defined Radio Access Network
platform [9]. An experimental evaluation encompassing a wide
range of usage scenarios and conducted over a real–world
testbed has demonstrated the capability of Lasagna to meet
the design requirements. We release the entire implementation
under a permissive APACHE 2.0 license for academic use1.

The rest of this paper is structured as follows. In Sec. II
we cover the related work. We delve into the Lasagna design
aspects in Sec. III, whereas in Sec. IV the implementation
details are presented. Section V and Sec. VI discuss, respec-
tively, the evaluation methodology and reports on the outcomes
of the measurements campaign. Finally, Sec. VII draws the
conclusions pointing out future work.

1Online resources available at: http://empower.create-net.org/978-1-5386-4725-7/18/$31.00 c© 2018 IEEE



II. RELATED WORK

The IEEE 802.11e amendment [7] established the founda-
tions for traffic prioritization through the Enhanced Distributed
Channel Access (EDCA) function. Nevertheless, it does not
provide any API for end–to–end service management nor
ensures radio resource isolation between traffic classes [10].

In this sense, queuing management has claimed significant
research efforts. H. Luo et al. [11] introduce an optimized
scheduling scheme that allocates the transmission opportuni-
ties for each station through a quadratic performance index
based on the lenght of the traffic queues. However, although
the packet delay is minimized, a fixed transmission rate and
a single flow per station are assumed. The same strategy is
studied using fuzzy logic in [12]. The inter–node priority is
assigned to each station based on the Access Category (AC),
the collision rate, and the residual energy level.

Significant QoS improvements can be achieved in
802.11n [13]. This amendment makes it possible to reduce
channel contention and protocol header overhead by intro-
ducing frame aggregation, thus improving the radio resource
utilization [14], [15]. S. Seytnazarov et al. [16] optimize
voice traffic performance using Aggregated MAC Protocol
Data Unit (A–MPDU) aggregation based on QoS requirements
and end–to–end delay statistics. The improvement is however
achieved at the expense of the remaining traffic classes. Mul-
timedia applications are the target of E. Charfi et al. [17]. This
scheme uses three priority queues, and frames are transmitted
according to the lowest time to serve a packet (i.e. real–time
frames have lowest serving times) and the amount of time
waiting in the scheduler. The channel utilization can be further
optimized if only the first Ethernet header is kept in an Aggre-
gate MAC Service Data Unit (A–MSDU) since the remaining
ones are equal [18]. Nevertheless, this modification in the
frame structure makes the approach non–standard compliant.

Given that ensuring QoS provisioning may penalize low
priority traffic, some works pursue fairness as additional
performance metric. On this basis, A–MPDU aggregation from
different traffic classes in the same frame is proposed in [19].
This mechanism inserts as many high priority packets as
possible in the aggregated frames, as well as lower priority
frames. However, multi–priority aggregation is not supported
by the 802.11 standard. O. Panova et al. [20] introduce an
algorithm that switches the number of traffic classes depending
on the network status.

The aggregation problem has also been widely studied from
the analytical point of view. D. Kim et al. [21] present a
numerical model that determines both the number of frames
to be aggregated and the transmission rate according to the
signal strength of the ACKs. In [22] a Discrete–Time Markov
Chain is presented with the aim of improving the channel
utilization and increasing the number of supported clients
without increasing the aggregation delay.

Although a significant part of the studies focuses on
throughput improvements, ensuring delay bounds is a more
challenging task, especially for real–time critical transmis-

sions. The proposal in [23] describes a fair scheduling algo-
rithm for A–MSDU aggregation based on both the lifetime
and the priority of the frames. By inserting high and low
priority traffic in the same frame, it aims to ensure transmission
fairness while reducing the average delay and the packet loss
ratio. This objective is also pursued in [24] for alleviating
the fairness problem. The scheme proposed by S. Kim et al.
dynamically sets the duration of the transmission opportuni-
ties for each traffic class based on the delay constraints of
the frames and the network load. Nevertheless, the work is
mainly targeted at multimedia traffic. Furthermore, the current
network load must be reported to the stations through beacon
frames, hence this proposal being non-standard compliant.

Despite the improvements achieved, the previous ap-
proaches do not allow to define customized traffic management
policies across different users, applications and services [25],
[26], [27], [28]. In this regard, J. Saldana et al. simulate the
expected behaviour of a central controlled WLAN with EDCA
support [29]. In this work, frame aggregation is disabled if
VoIP traffic is found. However, although it evaluates the impact
of two values for the size of the A–MPDU, it cannot be
dynamically modified. Furthermore, the analysis just emulates
the expected behaviour of the network. K. Nakauchi et al.
propose an airtime–based resource allocation mechanism for
network virtualization [30]. A similar idea is implemented on
a real testbed in [31]. Here, the scheduler manages both the
network slices and the clients in each slice depending on the
traffic requirements and the loss ratio. However, slice isolation
is not ensured given that the performance drop in a client may
degrade the throughput of the clients in other slices. Finally,
drawing an analogy with the 5G networks, the work in [32]
presents a slicing solution for Wi–Fi Access Points (APs)
based on the airtime consumed as the resource to share.
Nevertheless, the proposal is only assessed via simulation.

It should be noted that most of the works in the literature, if
not all, propose point solutions to very specific use cases and
problems. Conversely, our standpoint is that a one–size–fits–all
architecture is unlikely to meet the needs of current and,
especially, future use cases. As a consequence, realizing the
needed service–oriented vision requires a flexible and pro-
grammable network architecture spanning both the wired and
the wireless network segments. In this paper we precisely
address this challenge for 802.11–based enterprise WLANs.
To the best of our knowledge there is no other work proposing
a programmable and dynamic end–to–end network slicing
framework that takes into account resource isolation, and that
is implemented and tested over a real–world WLAN.

III. LASAGNA OVERVIEW

Supporting the requirements of current services and applica-
tions can often result in far–reaching changes in both the net-
work architecture and the protocol stacks. The emerging SDN
paradigm aims to break free of this constraint by decoupling
the data–plane and the control–plane. The network intelligence
is then shifted from the network devices to a central location
(the network controller) allowing to implement sophisticated
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Fig. 1. The Lasagna hypervisor architecture.

traffic management policies based on the global network view
exposed by the controller, while the devices just apply the
rules defined at the control plane.

This paper extends the mainstream SDN network slicing
concept to the wireless access segment in the specific case
of 802.11–based WLANs. The proposed framework, Lasagna,
aims at ensuring efficient sharing of the same physical infras-
tructure by different services and applications. More specif-
ically, we assume that an infrastructure provider owns the
physical Wi–Fi APs and the network switches, which are in
time leased to the service provider (the slice’s owners). Notice
how details about pricing although important are out of the
scope of this paper. Moreover, although this work focuses on
Wi–Fi networks, Lasagna’s design principles are quite general
and can be easily extended to other radio access technologies.

The basic Lasagna design builds upon a programmable hy-
pervisor sitting on top of the standard Linux Wi–Fi stack. The
hypervisor is in charge of creating, monitoring, and managing
the network slices, thus ensuring performance isolation and
efficient radio resource utilization. The high–level architecture
of the hypervisor is depicted in Fig. 1. As can be seen, each AP
can support a variable number of slices. Each of these slices
contains one aggregation buffer for each Wi–Fi client in the
network and can have its own EDCA parameters. For example,
one slice can use no aggregation and voice–optimized EDCA
parameters, while another slice can enable frame aggregation
and use background traffic EDCA parameters.

A. The Traffic Rule Abstraction

A network slice is defined as a set of radio resources that
are assigned to a particular flow. In this way, a network slice
can be simultaneously shared among multiple services and
applications, and a client can make use at the same time of
different network slices. The framework introduced in this
work provides the ability to create programmable network
slices. To this end, a new abstraction named Traffic Rule is
introduced to map a specific portion of the flowspace to a
particular scheduling discipline. The Traffic Rule abstraction
defines a set of parameters the AP must use when forwarding
traffic belonging to a particular slice. Such parameters include:

• EDCA. The EDCA parameters to be used for this
slice. This includes Congestion Window (CW), Arbitra-

tion Interframe Space Number (AIFSN) and Transmit
Opportunities (TXOPs).

• Aggregation. The type of frame aggregation to be used
for this slice, including A–MSDU, A–MPDU, or none.

• Quantum. The fraction of airtime that can be assigned to
this slice in each round.

Any parameter of a Traffic Rule can be modified in runtime
by the controller. Furthermore, the Traffic Rule abstraction can
be combined with the Transmission Policy abstraction [33],
which allows the SDN controller to specify the range of
parameters the AP can use for its communication with a
wireless client. Such parameters include:

• MCSes. The set of Modulation and Coding Schemes
(MCSes) that can be used by the rate selection algorithm.

• RTS/CTS Threshold. The frame length above which the
RTS/CTS handshake must be used.

• No ACK. The AP shall not wait for ACKs if true.
• Multicast policy. Specifies the retransmission policy used

in case of multicast traffic, which can be Legacy, Direct
Multicast Service (DMS), or Unsolicited Restries (UR).

• UR Count. Specifies the number of UR retransmissions.
Transmission Policy configurations can be specified on a L2

destination address basis. As a result, for each destination ad-
dress and for each slice in the network, a specific Transmission
Policy configuration can be created. The Transmission Policy
abstraction allows the controller to specify the set of MCSes
that can be used by the rate control algorithm. However, notice
that the frame–by–frame MCS selection is implemented at the
AP and not at the controller.

A Traffic Rule configuration is identified by the tuple
(SSID,DSCP ), where the Service Set Identifer (SSID)
refers to the name of a Wi–Fi network and the Differentiated
Services Code Point (DSCP) determines the priority of each
IP packet. The next subsection will explain how a precise
portion of the flowspace can be assigned to a Traffic Rule. As
can be seen, using both the Traffic Rule and the Transmission
Policy abstractions it is possible to ensure that applications
and services with the same requirements are provided the
same network resources. Notice how a default Traffic Rule
with DSCP set to 0x00 is always present.

B. End–to–end Slicing

Forwarding policies in OpenFlow–enabled switches can be
configured by a logically network controller by specifying
a set of rules. Each rule is composed of a Match, used to
identify the flow, and an Action, which specifies the operation
to be performed on each packet in that flow, e.g. forward
to zero, one, or more output ports, add/remove a header,
set a field, etc. The fields that can be used for the Match
rule compose the so–called OpenFlow Extended header and
include a combination of link, network, and transport header
fields. Figure 2 shows some examples of traffic matches that
can be defined using the OpenFlow Extended header. The first
match includes the traffic with the IP DSCP field set to zero.
The second rule includes HTTP traffic with 0x40 as IP DSCP.
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Traffic matching a given OpenFlow rule is tagged with a
unique DSCP value and then dispatched to the Hypervisor.
Here, the tuple (SSID,DSCP ) is then used to redirect the
traffic to the correct slice. Notice how, since a Wi–Fi station
can be associated to one, and only one, SSID at any given
time, the SSID can be easily computed using a packet MAC
destination address.

C. Airtime–based Slice Scheduling

The hypervisor proposed in this work uses a modified
version of the Deficit Round Robin policy to schedule Traffic
Rules. The proposed scheduling policy, named Airtime Deficit
Weighted Round Robin (ADWRR), assigns to each Traffic
Rule a fraction of the airtime according to its relative priority.
This is done because, in a wireless network, the cost of
transmitting a frame depends on the frame length and on the
actual channel conditions experienced by the receiver of that
frame. For example, a receiver that is far away from the AP
will utilize more radio resources due to the use of less efficient
MCSes and/or more frame retransmissions.

Our hypervisor uses the transmission statistics maintained
by the AP MCS selection module in order to estimate the
airtime that will be required to serve a particular Traffic Rule.
The details of the MCS selection algorithm used by the AP are
not important as long as they include, for each client, the link
delivery probability for each MCS supported by the AP. In
our implementation we relied on the Minstrel algorithm [34],
which is available in the Linux kernel. Based on this algorithm,
let P (Ri) be the probability of transmitting a frame and
receiving the corresponding Wi–Fi acknowledgement using the
MCS Ri, and let Rbest be the MCS with the highest delivery
probability. The expected transmission airtime A for a packet
L bits long can be approximated with:

A =
1

P (Rbest)

(
DIFS +

L

Rbest
+ SIFS + Tack

)
Notice how this formula ignores the exponential growth

of the congestion window for each failed transmission. Such
a simplification proved to be sufficient in our measurement
campaign. Nevertheless, a better estimation of the transmission
airtime can be computed using the results presented in [35].

The pseudo code of the enqueue and dequeue processes used
by the hypervisor are given respectively in Alg. 1 and Alg. 2.
Variables and data structure exploited by both algorithms are
summarized in Table I.

The hypervisor maintains a list of currently backlogged
Traffic Rules (ActiveQueue). Incoming frames are classified

TABLE I
HYPERVISOR DATA STRUCTURES

Variable Default Description

ActiveQueue {∅} List of backlogged Traffic Rule.
Q(i) 12000µs Traffic Rule i Quantum.
DC(i) 0 Traffic Rule i Deficit counter.

Algorithm 1 Enqueuing process.
1: procedure ENQUEUE(p)
2: (SSID,DSCP )← GetTrafficRule(p)
3: if (SSID,DSCP ) not in ActiveQueue then
4: ActiveQueue.pushBack((SSID,DSCP ))
5: ActiveQueue((SSID,DSCP )).enqueue(p)

Algorithm 2 Dequeuing process.
1: procedure DEQUEUE
2: (SSID,DSCP )← GetTrafficRule(p)
3: if ActiveQueue is not empty then
4: i = ActiveQueue.next()
5: DC(i) = DC(i) + Q
6: while True do
7: airtime = ActiveQueue(i).computeTxAirtime()
8: if airtime < DC(i) then
9: p = ActiveQueue(i).dequeue()

10: p.send()
11: DC(i) = DC(i) - airtime
12: else
13: break
14: if i is empty then
15: ActiveQueue.remove(i)

according to the (SSID,DSCP ) tuple (Alg. 1, row 3) and
then fed to the corresponding Traffic Rule (Alg. 1, row 5). If
such a Traffic Rule does not exist yet, it is created dynamically
by the hypervisor.

At each round the deficit counter DC(i) of the current Traf-
fic Rule is increased by a fixed quantity Q(i) (Alg. 2, row 5).
The hypervisor only serves Traffic Rules whose expected
transmission time is smaller than the deficit counter (Alg. 2,
row 8). After each transmission, this counter is decreased by
the expected transmission time of the frame (Alg. 2, row 11).
A frame whose transmission time exceeds the deficit counter is
held back until the next visit of the scheduler (Alg. 2, row 13).
Empty Traffic Rules are removed from the ActiveQueue and
their deficit counter is set to zero (Alg. 2, row 15).

It should be noted that the possibility of assigning a different
quantum to each Traffic Rule, and thus to each slice, enables
advanced QoS management features. For example, the slices
supporting services with stricter performance requirements can
be assigned more radio resources by specifying a larger value
for the Traffic Rule quantum parameter.

Each Traffic Rule contains multiple Aggregation Buffers, one
for each station in the virtual network. Aggregation Buffers
share the DC of the parent Traffic Rule. Nevertheless, each



5G-EmPOWER OS

Hardware Abstraction Layer

COHERENT SDK (Python/REST)

EmPOWER Runtime

netconf lvappnetconf openflow
Backhaul Controller

Intent Compiler

lvnfp

Path Computation Element

Infrastructure

vbsp

Edge Node

Fig. 3. The 5G–EmPOWER MEC–OS System Architecture.

Traffic Rule can schedule Aggregation Buffers in a different
manner. For example, one Traffic Rule can schedule its sta-
tions using a Round Robin policy, while another Traffic Rule
could use a best–MCS policy. Notice how, according to the
configuration of the parent Traffic Rule, Aggregation Buffers
can generate A–MSDU, A–MPDU, or non–aggregated frames.
In case of aggregated frames, the maximum frame length and
the aggregation timeout can be on a per–Traffic Rule basis.

IV. IMPLEMENTATION DETAILS

A. Overview

The implementation of Lasagna has been carried out
taking as a reference the 5G–EmPOWER plaform [9].
5G–EmPOWER is a Multi–access Edge Computing Operat-
ing System (MEC–OS) supporting lightweight virtualization
and heterogeneous radio access technologies. The high–level
architecture of this platform is shown in Fig. 3.

5G–EmPOWER builds upon a hardware abstraction layer
covering several radio access technologies, such as Wi–Fi and
LTE. Furthermore, it defines a set of high–level programming
abstractions that are exposed to the application layer using a
Python–based Software Development Kit (SDK).

B. Control and Data Plane Implementation

Each AP in a 5G–EmPOWER–managed network consists
of two components: one OpenvSwitch [36] instance man-
aging the communication over the wired backhaul, and one
Click modular router [37] instance implementing the 802.11
data–path. Click is a framework for writing multi–purpose
packet processing engines and is used to implement just the
wireless client/AP frame exchange.

The network intelligence is implemented at the
5G–EmPOWER controller, which is in communication
with the APs in the data–plane through its southbound
interface using a persistent TCP connection. The protocol
used for this communication is outside the scope of this
paper. A full account of its features can be found online [38].

Similarly, the OpenvSwitch running within each AP oper-
ates under the supervision of an OpenFlow–enabled backhaul
controller (Ryu in this particular case [39]). The intent–based

Backhaul 
Controller

send_flow_mod()

5G-EmPOWER

send_intent()

APs
(OpenvSwitch)

Fig. 4. Traffic Rule creation process.

interface presented in [40] is used for the communication be-
tween 5G–EmPOWER and the backhaul controller. Such inter-
face has been extended in order to allow the 5G–EmPOWER
controller to request the backhaul controller to tag with a
particular DSCP code all the traffic matching a certain flow
rule and arriving on the backhaul interface of a given AP.

C. Traffic Rule Creation

The Traffic Rule abstraction is exposed to the application
layer through an object mapping properties to operations. This
allows it to manipulate the Traffic Rule configurations defined
for a certain slice by simply accessing the traffic_rules
property of a Tenant object (i.e. a virtual network). For
example, defining a new Traffic Rule configuration for HTTP
traffic can be as simple as shown below.

>>> t e n a n t . t r a f f i c r u l e s [ ” t p d s t =8080 ” ] = \
>>> T r a f f i c R u l e ( t e n a n t , dscp =0x40 , quantum =5000)

The listing above will trigger two operations: (i) the creation
of a new slice for the DSCP 0x40 at every AP in the virtual
network using 5000 µs for the slice quantum; and (ii) a
message to the backhaul controller through the intent–based
networking interface, as depicted in Fig. 4. This message has
the following structure:

{
” s r c d p i d ” : ” 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0A” ,
” s r c p o r t ” : 1 ,
” d s t d p i d ” : ” 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0A” ,
” d s t p o r t ” : 4 ,
” matches ” : {

” t p d s t ” : ”8080”
} ,
” t a g ” : 0x40

}

The pair (src dpid, src port) identifies the AP backhaul
port, while the pair (dst dpid, dst port) identifies the virtual
port to which the Click instance implementing the Wi–Fi
data–path is attached. The semantic of the message is that all
the Wi–Fi–bound traffic arriving on the AP backhaul port that
matches the specified rule must be tagged with the specified
DSCP code. This will allow the hypervisor to dispatch the
specified portion of the flowspace to the new Traffic Rule.

D. Traffic Rule Monitoring and Update

The status of each Traffic Rule can be monitored by the
5G–EmPOWER controller using the slice telemetry frame-
work. More specifically the controller can periodically gather
the status of all the Traffic Rules defined in a certain AP. Such
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status includes for example the current number of backlogged
frames, the total airtime spent, the number of transmitted
packets and bytes, and the number of dropped packets and
bytes. Such information can be used for different purposes.
For instance, the controller could use it to identify if some of
the Traffic Rules are inactive, thus triggering a reassignment
of the available resources to other Traffic Rules.

V. EVALUATION METHODOLOGY

Lasagna has been evaluated on a real–world testbed whose
high–level architecture is depicted in Fig. 5. The testbed is
composed of one AP and five clients. A laptop connected
to the wired segment of the network runs both the Ryu
and the 5G–EmPOWER controllers. The AP is based on the
PCEngines ALIX 2D (x86) processing board and is equipped
with two Wi–Fi cards based on the Atheros AR9220 chipset.
OpenWRT 15.05.01 is used as operating system for the AP.
The experiments are conducted on the 5 GHz band with the
cards operating on channel 48 in 802.11n mode. Two slices
are created in the network: the first one consists of three users
(C1, C2 and C3), while the second one consists of two users
(C4 and C5). The wireless clients are located 5 m away from
the AP and are standard laptops.

The evaluation comprises eighteen different scenarios di-
vided into three groups. In all the scenarios a saturated UDP
stream was generated between the laptop running the con-
trollers and each wireless client. Each measurement was 60s
long. Traffic was generated using Iperf. The results reported
in the next section are the average of 10 runs. The first
group of experiments (1 to 8) are carried out without any
kind of AP/controller telemetry. Then, the same experiments
are repeated with the slice telemetry enabled (9 to 16). In
this configuration the controller periodically polls the AP to
gather the slice utilization statistics. The polling period was
set to 100ms. These two groups of experiments make use of
constant bitrate traffic. By contrast, intermittent traffic is used
in scenarios 17 and 18. Finally, the scenarios named B1 and
B2 refer to the baseline configuration in which no hypervisor

TABLE II
EVALUATION SCENARIOS.

Test Users
Slice 0

Users
Slice 1

DSCP
Slice 0

DSCP
Slice 1

Channel
conditions Traffic

B1 5 0 - - Equal Const.
B2 5 0 - - Different Const.

1, 9 3 2 0x00 0x00 Equal Const.
2, 10 3 1 0x00 0x00 Equal Const.
3, 11 3 2 0x00 0x20 Equal Const.
4, 12 3 1 0x00 0x20 Equal Const.
5, 13 3 2 0x00 0x00 Different Const.
6, 14 3 1 0x00 0x00 Different Const.
7, 15 3 2 0x00 0x20 Different Const.
8, 16 3 1 0x00 0x20 Different Const.

17 3 2 0x00 0x00 Equal Int.
18 3 2 0x00 0x00 Different Int.
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Fig. 6. Bitrate comparison for two network slices with the same priority and
equal channel conditions for the clients.

is used. As evaluation metrics we have used the aggregated
throughput, the bandwidth achieved by each client, and the
jitter. Apart from the aforementioned transmissions, no other
traffic exists in the network. A summary of the tests conditions
used in each scenario is provided in Table II.

VI. RESULTS

A. Traffic Prioritization

Experiments 1 and 2 aim to demonstrate the isolation ca-
pabilities across slices of our hypervisor and how the number
of clients per slice does not affect the performance of other
slices. In experiment 1 the slices have the same priority and
the clients are in the same channel conditions (based on signal
strength measurements). The Quantum of the slices is set to the
time needed to transmit a standard Ethernet frame (1500 bytes
of MAC payload) at the 6 Mbps basic rate in IEEE 802.11n.
The results for these tests are reported in Fig. 6a, where it
can be seen that the Quantum is equally divided between the
clients in each slice.

Experiment 2 follows the same approach of experiment 1
with the difference that, in this case, a single client is active
in the Slice 2. As can be observed in Fig. 6b, the slice
isolation features provided by our hypervisor allow the client
in the Slice 2 to fully use the resources assigned to its slice.
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Fig. 7. Bandwidth comparison for two network slices with different priority
and equal channel conditions for the clients.

Moreover, it can also be noticed that the performance of the
clients connected to the Slice 1 is not affected by the resource
redistribution in the Slice 2.

Experiments 3 and 4 present the same scenarios described
in the previous measurements with the main difference that, in
this case, the Slice 2 is given twice the Quantum of the Slice 1.
Figure 7 sketches this new situation, and proves how the slices
isolation is guaranteed along with the priority assignment.

B. Performance Isolation

These experiments aim to show the hypervisor performance
isolation features when some clients experience poor channel
conditions. We remind the reader that the hypervisor follows
an ADWRR scheduling discipline. Therefore, the transmission
opportunities of the users depend on the required transmission
time, and hence, on their channel conditions.

The first set of experiments (tests 5 to 8) demonstrates how
the hypervisor can ensure the coexistence of the slices even
when some users have poor channel conditions. Figure 8 plots
the results in terms of bandwidth for experiments 5 and 6. The
test conditions are the same than in experiments 1 and 2, with
the difference that the station C4 is placed 25 m away from
the AP. In Fig. 8 it is shown that the Slice 1 does not present
changes with respect to the first scenarios and is not affected
by the problems found in the other slice. Moreover, in Fig. 8b
it can be observed that when only the station C4 is connected
to the Slice 2, its performance is, due to the poor channel
status, lower than the one shown in Fig. 6b. As a result, the
other users in the same slice are also affected by this issue,
as is the case of the station C5. However, the throughput of
the Slice 1 is still unaffected. Tests 7 and 8 present the same
results but having increased the priority of the Slice 2. For this
reason, and due to space constraints, the graphical results of
these tests are omitted.

In a system without slicing capabilities all the stations
will equality share the available radio resources only if they
experience similar channel conditions. If such conditions are
not met, the performance of all the users in the network will
be penalized due to the so called IEEE 802.11 Performance
Anomaly [10]. Figure 9a illustrates this situation by using
two different channel qualities. In the scenario named Q1 all
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Fig. 8. Bandwidth comparison for two network slices with the same priority
and equal channel conditions for the clients.
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Fig. 9. Bitrate comparison between a baseline scenario and Lasagna using
two slices with the same priority.

the users experience similar channel conditions, while in the
scenario marked as Q2 the station C4 experiences poor channel
conditions. This issue can be also verified in Fig. 10a, where
it is shown how the transmission jitter for all the stations
increases when a user experiencing poor channel conditions
is added to the network. By contrast, as can be observed in
Fig. 9b, by using our hypervisor only the slice with the client
having worse channel conditions is penalized. Furthermore,
the transmission jitter is also maintained for the stations in
the Slice 1, while the one in the Slice 2 is just slightly increased
when these issues appear (Fig. 10b).

C. Resource Reallocation

Experiments 17 and 18 aim at demonstrating the ability
of the system to dynamically reallocate radio resources when
facing traffic changes. To this end, in experiment 17 the stream
addressed to the client C5 stops after 30s. In Fig. 11 it can
be seen that when the transmission finishes, the resources are
dynamically reassigned to the remaining clients in the same
slice. Similar results are shown in Fig. 12 for experiment 18,
which differs from the previous one in the fact that the
client C4 experiences poor channel conditions. As can be
observed, when the stream addressed at the client C5 stops, the
resources of the Slice 2 are entirely assigned to the client C4.
This is because the client C4 is the only station connected
to the Slice 2. Conversely, in the case of a higher number of
clients, the resources would be equally allocated among them.
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Fig. 10. Jitter comparison between a baseline scenario and Lasagna using
two Traffic Rules with the same priority.

TABLE III
CPU AND MEMORY USAGE RESULTS.

CPU [%] Memory [%]
µ σ µ σ

Baseline 77.579 4.946 23.184 0.211
Proposal without telemetry 79.572 7.658 26.637 0.735

Proposal with telemetry 80.481 6.579 30.559 0.260

D. CPU and Memory Consumption

In this set of experiments we aim to show that the com-
putational overhead introduced by our hypervisor does not
penalize the data–path performance nor incurs in high CPU
and/or memory utilization. In this regard, Table III compares
the CPU and memory utilization of the baseline system with
the ones of the system using the proposed hypervisor with
and without the slice telemetry. These data are collected once
per second. As can be seen, the difference found in the CPU
consumption is practically negligible. Also, the increase in the
memory consumption without introducing slice telemetry is
just around 3%, which increases to 7% when the telemetry is
used. Finally, the impact of the slice telemetry on the data–path
performance is always lower than 1%.

E. Slice Telemetry

As stated in the previous section, experiments from 1 to 8
have been performed with the slice telemetry disabled, while
experiments from 9 to 16 were performed with the slice
telemetry enabled. However, the results difference is practi-
cally negligible and always lower than 1% (which is a value
within the confidence interval of the experiments). Therefore,
due to space constraints, only the results without telemetry are
shown for all the experiments.

VII. CONCLUSIONS

In this paper we propose, Lasagna, a programmable
end–to–end slicing framework for 802.11–based WLANs.
We introduce the Traffic Rule abstraction mapping a precise
portion of the flowspace to a certain scheduling discipline. An
experimental evaluation performed on a real–world testbed and
involving a wide range of scenarios has shown the resource
allocation and performance isolation features of Lasagna.

As future work, we plan to implement new Aggregation
Buffers scheduling disciplines and, at the same time, to allow
the controller to swap such disciplines in runtime. Moreover,
we also plan to use the framework to jointly optimize user
association and radio resource utilization across the entire
network. Finally, we intend to extend the proposed abstraction
and its implementation to LTE networks.
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