
Design and Evaluation of a K8s-based System for
Distributed Open-Source Cellular Networks
Javier Palomares∗‡, Estefanı́a Coronado∗†, David Rincón‡, and Muhammad Shuaib Siddiqui∗

∗i2CAT Foundation, Barcelona, Spain; Email: {javier.palomares, estefania.coronado, shuaib.siddiqui}@i2cat.net
‡Department of Network Engineering, Universitat Politècnica de Catalunya (UPC), Castelldefels, Barcelona, Spain;

Email: javier.palomares@estudiantat.upc.edu, david.rincon@upc.edu
†Universidad de Castilla-La Mancha, Albacete, Spain; Email: estefania.coronado@uclm.es

Abstract—Virtualization in cellular networks is one of the
key areas of research where technologies, infrastructure and
challenges are rapidly changing as 5G system architecture
demands a paradigm shift. This paper aims to study the via-
bility and the performance of cloud-native infrastructures for
hosting network functions. The selected frameworks implement
both the 4G and the 5G stacks and their network functions.
This work considers a variety of scenarios for enabling the
deployment of a distributed and open-source cellular network:
a baremetal setup, an all-docker-based setup and the proposed
Kubernetes setup. Moreover, an analysis of the impact that
the Radio Access Network (RAN) and the Core Network (CN)
have on computational resource utilization is presented as the
network conditions vary. The design proposed in this work has
been validated and analyzed using the proposed prototype and
testbed. This paper proposes a design to increase resource usage
flexibility and performance and reduction of deployment time.
The analysis of the gathered data reveals that the deployments
of containerized cellular networks display better performance in
terms of flexibility, low startup times, and ease of deployment
while consuming the same resources as the non-containerized.

Index Terms—Virtualization, NFV, SDN, Distributed Systems,
4G, 5G, Performance Evaluation.

I. INTRODUCTION

In recent years, mobile networks have pursued to fulfill
users’ demands, including ultra-fast deployment, high speed,
and reliability. Due to these needs, consecutive generations of
enhanced communication networks have been deployed glob-
ally. Especially in a new fully distributed network paradigm
where network functions are deployed in different locations
and even provided by several software frameworks. Combin-
ing these requirements with the appearance of technologies,
such as Software Defined Networks (SDN) [1] and Network
Functions Virtualisation (NFV) [2], and recent virtualized
infrastructure managers, encourage a focus on developing a
more flexible architecture for mobile networks and examining
their impact on the underlying infrastructure.

The cloud-native architecture [3] is a design methodology
that utilizes cloud services, such as Elastic Compute Cloud
(EC2), Simple Storage Service (S3), and Lambda from Ama-
zon Web Services [4]. These services allow dynamic and agile
application development techniques which take a modular
approach to building, running, and updating software through

a suite of cloud-based microservices. Each microservice is cre-
ated to execute a particular function (implement, communicate,
or run processes), which are often packaged into containers.
Some benefits of containerization are: (i) portability, ease, and
speed of deployment; (ii) fast scalability upon demand; and
(iii) avoidance of incompatibility issues between the libraries
and dependencies of the different components when updating
or setting up the environment.

In the literature there exist works evaluating the impact
that technologies such as SDN or NFV have in virtualized
systems [5] [6], to solve the increase in demand on the vital
requirements for bandwidth, latency, and quality of service.
In [7] the authors provide a review focusing on the benefits of
containerizing and distributing the Core Network (CN), while
the work in [8] presents the impact of containerization and
distribution of the Radio Access Network (RAN). By contrast,
the main objective of this work is to enable the deployment
of a distributed and configurable open-source solution for
cellular networks where the CN and the RAN are containerized
separately and deployed in different locations. Moreover, we
aim to empirically analyze the impact that both containers have
on the underlying hardware as the network conditions change.
In this context, the contributions of this paper are as follows:

• First, we analyze how different network conditions affect
the proposed Kubernetes-based deployment’s infrastruc-
ture resources. Our prototype’s capabilities are compared
to: (i) a baseline setup, in which the original software
frameworks are deployed directly to the Operating Sys-
tem, without any containerization; and (ii) an all-docker-
based project [9] found in the researched state-of-the-art,
which provides comparable functionality.

• Second, we compare and analyze the effects of distribut-
ing the software modules over several devices versus
concentrating all modules on a single node.

• Third, the state-of-the-art works provide descriptors and
Docker images that are exclusively suitable to their
User Equipment (UE) (not generic). For that reason, we
propose a set of descriptors that enable a configurable,
automated, and distributed deployment (separating the
RAN and CN functions across a Kubernetes (K8s) clus-
ter). This programmable feature allows the end user to

perform a transparent registration of the UE, regardless
of the scenario. The deployment of the network segments
is enabled by two Docker images, which provide the
necessary software modules to deploy an open-source-
based network in seconds. In particular, the software
implementation takes as a reference the srsRAN [10] and
Open5GS [11] frameworks, as two of the most used open-
source solutions for cellular networks.

The remainder of this paper is organized as follows.
Section II reviews the related work on tools for building dis-
tributed cellular networks. Section III focuses on the research
work, explaining the proposed design and configuration for the
Kubernetes-based network deployment. Section IV presents
the methodology used in the evaluation and discusses the
achieved results. Conclusions and future lines of work are
summarized in Section V.

II. RELATED WORK

One of the key enablers for distributed networks is un-
doubtedly virtualization and containerization, whose role in
networking is defined by the authors of [7] as: “The con-
tainerization seems to be the adequate approach to overcome
the bottleneck caused by the Serving Gateway (SGW), as
it could enable rapid deployment by scaling SGW instances
based on workload”. They propose Docker to enable the
cloudification of mobile network functions. They also build
a proof of concept of the scalability of SGW, comparing
the performances of Kubernetes and Mesos-Marathon. That
showed that container-based approaches are a viable option
for achieving elasticity on future mobile networks.

Moreover, two different testbeds for cloud-based 5G net-
works are analyzed in [12] and [13] to shape 5G technology
as a flexible, scalable, and demand-oriented network. The work
in [12] introduces a novel testbed called 5GIIK, which pro-
vides implementation, management, and orchestration across
all network domains and different access technologies. It
provides capabilities such as slice provision dynamicity and
real-time monitoring. On the other hand, the authors of [13]
display a 5G mobile network testbed with a virtualized and
orchestrated structure. It uses containers to deploy and orches-
trate VNFs to flexibly create various mobile network scenarios.

Taking into consideration the virtualization of the radio
access network, the work in [8] aims to ease the integration
of satellite components in forthcoming 5G systems (Sat-
CloudRAN). The authors give special attention to the design,
by considering the split and placement of virtualized and non-
virtualized functions, while considering the characteristics of
the transport links between both kinds of functions. They
assess how virtualization and softwarization technologies, such
as NFV and SDN can deliver part of the satellite gateway
functionalities as virtual network functions and can achieve
a flexible and programmable control and management of the
satellite infrastructure.

The related works mentioned focus their efforts on analyz-
ing separately: (i) the impact that technologies such as SDN or
NFV have in virtualized systems; (ii) the creation of different

sets of testbeds for cloud-based 5G networks; (iii) the benefits
of containerizing, and distributing the core part of the network;
and (iv) the behavior of the virtualization of the RAN. This
paper uses existing open-source frameworks and orchestration
tools to enable the deployment of a containerized, distributed
and configurable solution for cellular networks. This deploy-
ment has been performed in two different manners: (i) a single
worker node cluster containing both, the RAN and the CN;
and (ii) the separation of the CN and RAN logic into two
different worker nodes. Due to this, we propose our own
Docker images and K8s descriptor files for the deployment.
The prototype has been tested on the proposed testbed, and an
in-depth analysis has been performed on the impact the RAN
and the CN have on resource utilization (radio and virtualized
infrastructure) as the network conditions vary. To the best of
our knowledge, no prior research has been conducted in the
literature discussing the impact on resource consumption and
the network performance of containerizing, and distributing
both the CN and RAN parts of the network.

III. DESIGN OF THE SETUP AND CONFIGURATION FILES
REQUIRED FOR THE DEPLOYMENT

The main aim of this paper is to enable a configurable,
distributed and containerized open-source-based network that
could be deployed on multiple nodes, keeping the RAN and
CN functions separated. Based on this deployment, an analysis
of the network and the infrastructure performance is done
when various network parameters change. Furthermore, the
purpose of this work is to examine the impact of dispersing
the CN and RAN modules among multiple devices, as opposed
to having all the logic focused on a single node.

The road to fulfilling these goals begins with achieving the
most basic internet connectivity in a UE, using a baremetal
deployment. All the network functions of the CN and the
RAN are directly instantiated on a single computer’s operating
system. This is done to ensure that the open-source modules
behave as expected. The second stage consists of the design
of a virtualized network using Kubernetes to automate and
manage the deployment. Fig. 1 depicts the two K8s-based
configurations that have been implemented. The initial K8s
cluster (shown by blue lines) consists of two Ubuntu 20.04
PCs, one functioning as a master node and the other as
a worker node. The master node is in charge of hosting
the cluster’s control plane and, among other things, it is
responsible for providing scheduling for the pods. Workloads
for applications are scheduled using the worker nodes. The
pods holding the logic of the CN and the RAN are deployed
together in the worker node in this case. In the second scenario
(shown by red lines), the K8s cluster is composed of three
computers running Ubuntu 20.04, one of which serves acting
as the master node and the other two as worker nodes. The
pods holding the RAN and CN functionalities are distributed
among the two worker nodes in this scenario. In addition to
the nodes, the following hardware components are employed:
(i) a laptop running Ubuntu 20.04, that serves as the UE; (ii) a
HUAWEI LTE USB Stick; (iii) a programmable sysmoUSIM

Fig. 1. K8s two-node and three-node deployments.

that will connect the computer to the network in order to
gain Internet access; (iv) a USRP B210 antenna with USB
3.0 connected to one of the worker nodes; and (v) a D-Link
DGS 108 Switch, to interconnect the nodes of the cluster.

Before setting up the K8s clusters, the following steps
must be completed on all nodes: (i) configuring the computer
hostnames; (ii) installing Docker; (iii) disabling swap and
enabling IP forwarding; and (iv) installing kubectl, kubelet
and kubeadm. Docker was chosen as the Container Runtime
Engine (CRE) due to the majority of the relevant related-
work projects researched were based on it and because it was
supported when the project was established, even if the support
is no longer maintained. Other CRE, such as containerd [14],
should be examined for future works. Calico was chosen as
a plug-in for the Kubernetes Container Network Interface
(CNI), which offers Kubernetes agents to enable networking
for containers and pods via the K8s API.

The srsLTE and Open5GS solutions were chosen to deploy
the RAN and CN, respectively. Those open-source efforts
were chosen for their: (i) active community; (ii) extensive
documentation; and (iii) implementation of both the 4G and
5G stacks. Because the Docker Hub images of both software
were too specific, designed exclusively for their own UE,
it was required to create new Docker images to enable a
generic and automated deployment. In the process, a new
configurable feature was added. It enables future users to use
their own UE by entering SIM card specifications such as: the
Mobile Country Code (MCC), Mobile Network Code (MNC),
Tracking Area Code (TAC), and the number of physical
resource blocks (PRBs) that need to be allocated. This is
made feasible by the inclusion of a script that adjusts the
internal settings of the CN and RAN software while launching
a descriptor file, as will be discussed further below. These
Docker images are freely available to the community in [15].

Following the successful construction of the Docker images,
it was essential to create a descriptor file in charge of deploy-
ing the various pods and services required for the distributed
network to function properly. A manageable piece of this file,
which defines the second proposed scenario (one master-node
and two worker-nodes), is described below to help the better
understanding of its structure and functioning. The descriptor
in Code 1 defines the following pods:

kind: Pod
name: epc #Name of the Pod

spec:
containers:
- name: open5gs #Container name

image: javipalomares/open5gs:latest
env: #Environmental variables
- name: mcc

value: "001"
- name: mnc

value: "03"
- name: tac

value: "7"
nodeSelector:

IDname: kworker1 #Node label

kind: Pod

name: srsenb #Name of the Pod
spec:

containers:
- name: srsenb #Container name

image: javipalomares/srslte:latest
env: #Environmental variables
- name: mcc

value: "001"
- name: mnc

value: "03"
- name: n_prb

value: "75"
nodeSelector:

IDname: kworker2 #Node label

Code 1. Fragment of the descriptor file.

• The first pod is called epc and consists of a container
based on the Open5GS Docker image. The modified
version of that image, which includes all of the CN
logic, may be found in (javipalomares/open5gs:latest).
Following that, the environmental variables (mcc, mnc,
and tac) that enable the configurable functionality must
be initialized. The MCC and MNC are part of the SIM
card’s International Mobile Subscriber Identity (IMSI).
They are utilized to register the UE. The TAC (Tracking
Area Code) is a Tracking Area’s unique identifier. Due
to one of this work’s objectives is to study the impact of
separating the CN and RAN logic on various hosts, the
whole core is deployed in a single container.

• The second pod is named srsenb and consists of a
container based on the srsLTE Docker image. The mod-
ified version of that image, which includes all of the
RAN logic, may be found in (javipalomares/srslte:latest).
The environmental variables (mcc, mnc, and n prb) that
enable the configurable functionality must be initialized.
As in the preceding pod, the MCC and MNC are utilized
to register the UE, and the n prb represents the number
of the amount of physical resource blocks to be allocated.

IV. PERFORMANCE EVALUATION AND ACHIEVED
RESULTS

A. Methodology

This section compares the baremetal deployment’s behavior,
using its results as a baseline, to the all-Docker-based project

TABLE I
LIST OF THE EXPERIMENTS PERFORMED.

Experiment # PRB Distances (m) Injected bitrate (Mbps) Measurement
1 25, 50, 75 1 [1, ..., 150] Throughput
2 25, 50, 75 3 [1, ..., 150] Throughput
3 25, 50, 75 6 [1, ..., 150] Throughput
4 25, 50, 75 10 [1, ..., 150] Throughput
5 25, 50, 75 15 [1, ..., 150] Throughput
6 25, 50, 75 20 [1, ..., 150] Throughput
7 25, 50, 75 1, 6 25 Resources
8 25, 50, 75 1 50 Resources
9 25, 50, 75 1 75 Resources

10 25, 50, 75 1 100 Resources
11 25, 50, 75 1 150 Resources
12 75 3 75 Time to restart

and the Kubernetes deployments. This study compares the im-
pact of having the CN and RAN software modules divided into
various devices to having all the logic concentrated on a single
one. The analysis focuses mainly on resource performance,
with a particular emphasis on the findings obtained in open-
source-based Kubernetes scenarios.

The tests were carried out with the iPerf3 software, which
is a tool for creating data streams for both Transport Control
Protocol (TCP) and User Datagram Protocol (UDP) to analyze
network performance. Only UDP streams will be utilized for
deployment evaluation in order to adjust the transmission rate
parameter. The iPerf3 flows’ endpoints are the host executing
the RAN logic and the registered UE. For each of the following
scenarios, a 95% confidence interval is provided to estimate
the measurements:

• Different deployments: Baseline, Docker-based project
and two-node and three-node Kubernetes clusters.

• Maximum number of Physical Resource Blocks (PRB)
on the eNB/gNB: 25, 50 and 75.

• Distances between RAN-UE (meters):[1, 3, 6, 10, 15, 20].
• Transmission speed of the packet streams: 1Mbps,

25Mbps, 50Mbps, 75Mbps, 100Mbps and 150Mbps.
The parameter values are designed to accurately represent

and study the testbed’s behavior and resource usage, ranging
from tiny to limiting quantities. Table I outlines the set
of experiments done for each deployment and defines the
parameters involved and their analyzed values in each case.

B. Results Discussion

Before delving into the results, it is important to note that,
due to the similarities in the data collected from the two
Kubernetes scenarios, only the results of the most distributed
deployment will be shown. As previously stated, this work as-
sesses the impact of separating the CN and RAN logic modules
into various devices. The closeness of the results of having
the CN and RAN modules separated in multiple Kubernetes
worker-nodes vs having all the logic focused on one worker-
node can be seen in Fig. 2. It compares the throughput of
two-node (blue) and three-node (red) K8s clusters under two
different sets of conditions. Fig. 2a exhibits the 25 PRBs and
1-meter distance between the UE and the antenna, whereas
Fig. 2b depicts the 50 PRBs and 6-meter distance. Due to
output similarities, for brevity, and because one of the goals
of this article is to make deployment as dispersed as feasible,

0 25 50 75 100 125 150
Injected bitrate (Mbps)

0
2
4
6
8

10
12
14
16
18
20
22

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Two-node K8s 25PRB 1m
Three-node K8s 25PRB 1m

(a) Results with 25PRBs and 1m.

0 25 50 75 100 125 150
Injected bitrate (Mbps)

0
2
4
6
8

10
12
14
16
18
20
22

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Two-node K8s 50PRB 6m
Three-node K8s 50PRB 6m

(b) Results with 50PRBs and 6m.

Fig. 2. Results comparison between the two-node and the three-node K8s
deployments for two different sets of conditions.

0 25 50 75 100 125 150
Injected bitrate (Mbps)

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

bp
s)

Local 25PRB
Kubernetes 25PRB
Docker 25PRB

Local 50PRB
Kubernetes 50PRB
Docker 50PRB

Local 75PRB
Kubernetes 75PRB
Docker 75PRB

(a) Throughput at 1m.

0 25 50 75 100 125 150
Injected bitrate (Mbps)

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

bp
s)

Local 25PRB
Kubernetes 25PRB
Docker 25PRB

Local 50PRB
Kubernetes 50PRB
Docker 50PRB

Local 75PRB
Kubernetes 75PRB
Docker 75PRB

(b) Throughput at 15m.

Fig. 3. Comparison between deployments and PRBs at different distances
(experiments 1 and 5).

the following figures and results will only display findings
from the three-node Kubernetes scenario.

1) Measuring throughput: In experiments 1–6, the average
throughput was measured using the average values provided
by iPerf3 at the end of each test. Fig. 3 displays the average
throughput of trials 1 and 5, comparing the three distinct
deployments while varying the amount of PRB. By analyzing
the results, it is readily observed in Fig. 3 that distance and
number of PRBs influence the throughput of the Kubernetes
deployment. As can be deduced, the more resources allocated
(the greater the quantity of PRB), the higher the throughput.
However, it has been shown that the greater the distance
between the UE and the RAN, the lower the throughput.
Furthermore, as the distance grows, so does the confidence
interval at 95%. This signifies that the value of the throughput
fluctuates more with regard to the average. Interferences and
free space losses are the cause of these behaviors. When com-
paring the K8s deployment to the baseline setup, the network
distribution has almost no negative impact on the throughput
values. When comparing the K8s deployment to the baseline
configuration, there is almost no negative impact associated
with the distribution of the network on the throughput. Their
tendencies and values are very similar. In contrast, the attained

25 50 75
PRB

0
5

10
15
20
25
30
35
40
45
50
55
60

%
 C

PU

Mongo
amfd
ausfd
bsfd
mmed
nrfd

nssfd
sgwcd
sgwud
smfd
udmd
upfd

udrd
hssd
pcfd
pcrfd
srsenb

(a) %CPU usage at 25Mbps.

25 50 75
PRB

0
5

10
15
20
25
30
35
40
45
50
55
60

%
 C

PU
Mongo
amfd
ausfd
bsfd
mmed
nrfd

nssfd
sgwcd
sgwud
smfd
udmd
upfd

udrd
hssd
pcfd
pcrfd
srsenb

(b) %CPU usage at 150Mbps.

25 50 75
PRB

0

2

4

6

8

10

%
 R

AM

Mongo
amfd
ausfd
bsfd
mmed
nrfd

nssfd
sgwcd
sgwud
smfd
udmd
upfd

udrd
hssd
pcfd
pcrfd
srsenb

(c) %RAM usage at 25Mbps.

25 50 75
PRB

0

2

4

6

8

10

%
 R

AM

Mongo
amfd
ausfd
bsfd
mmed
nrfd

nssfd
sgwcd
sgwud
smfd
udmd
upfd

udrd
hssd
pcfd
pcrfd
srsenb

(d) %RAM usage at 150Mbps.

Fig. 4. Comparison of the resource consumption at different injected bitrates and number of PRB, in the baseline deployment (experiments 7 and 11).

25 50 75
PRB

0
5

10
15
20
25
30
35
40
45
50
55
60

%
 C

PU

Mongo POD epc Calico Service Web-UI POD srsenb

(a) %CPU usage at 25Mbps.

25 50 75
PRB

0
5

10
15
20
25
30
35
40
45
50
55
60

%
 C

PU

Mongo POD epc Calico Service Web-UI POD srsenb

(b) %CPU usage at 150Mbps.

25 50 75
PRB

0

2

4

6

8

10

%
 R

AM

Mongo POD epc Calico Service Web-UI POD srsenb

(c) %RAM usage at 25Mbps.

25 50 75
PRB

0

2

4

6

8

10

%
 R

AM

Mongo POD epc Calico Service Web-UI POD srsenb

(d) %RAM usage at 150Mbps.

Fig. 5. Comparison of the resource consumption at different injected bitrates and number of PRB, in the K8s deployment (experiments 7 and 11).

throughput in the all-Docker-based setup is significantly lower
than the other two, making our deployment more efficient than
the one found in the literature.

Fig. 3 depicts that the RAN software dynamically assigns
the number of PRBs based on the injected bitrate until it
reaches the maximum available, causing the throughput to be
substantially lower than the injected bitrate. It can also be
appreciated that at 75 PRBs and 1-meter distance, saturation
is reached at around 33 Mbps.

2) Measuring resource consumption: The computing re-
sources utilized by each module of Open5GS and srsLTE were
assessed in experiments 7-11. The main goal of these tests is
to examine the effect that injected bandwidth and the number
of PRBs have on the resources used.

Fig. 4a, Fig. 5a, Fig. 4b and Fig. 5b depict the CPU re-
source utilization of the baseline and Kubernetes deployments
respectively, at two different injected bitrates. The resource
consumption of both scenarios is approximately the same.
After evaluating the results, the following conclusions were
reached in the K8s deployment:

• The ”srsenb” module, which represents the RAN soft-
ware, consumes far more resources than the other mod-
ules combined, accounting for about 60% of CPU capac-
ity at high injected bitrates. This behavior is replicated
in the rest of the setups. The amount of PRB has a little
influence on the ”srsenb” module’s CPU consumption,

but has essentially no effect on the rest of the components.
The baseline deployment exhibits the same behavior.

• The ”epc” pod, which contains all of the core functions,
consumes the same amount of CPU resources as all of
the baseline CN functions’ combined. This is expected
because, under the same network conditions, both de-
ployments launch the same core functions.

Fig. 4c, Fig. 5c, Fig. 4d and Fig. 5d depict the use of RAM
resources in the baseline and Kubernetes setups. In contrast
to the results obtained in the CPU resources experiments,
RAM utilization is more connected to the number of PRBs
than to the traffic transiting the network. Furthermore, even
if the ”srsenb” module still has the biggest contribution, its
magnitude is no longer dominant in terms of RAM utilization.
Furthermore, the Kubernetes deployment is the most RAM-
consuming scenario, by 4% on average. When compared to
the flexibility and ease of deployment provided by the K8s
arrangement, this additional 4% can be regarded as trivial. This
difference is due to the fact that there is no memory allocation
on demand and all the modules are always working.

3) Measuring forced reconnecting time: The goal of experi-
ment 12 is to observe how the system responds to a breakdown
in one of its modules and if it is capable of resolving the prob-
lem and continuing to function. This is especially important
in dispersed contexts where a virtual network function may

1.
00

2.

00

3.
00

4.

00

5.
00

6.

00

7.
00

8.

00

9.
00

10

.0
0

11
.0

0
12

.0
0

13
.0

0
14

.0
0

15
.0

0
16

.0
0

17
.0

0
18

.0
0

19
.0

0
20

.0
0

21
.0

0
22

.0
0

23
.0

0
24

.0
0

25
.0

0
26

.0
0

27
.0

0
28

.0
0

29
.0

0
30

.0
0

Time (sec)

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

bp
s)

Attempt 1 Attempt 2 Attempt 3 Attempt 4 Attempt 5

Fig. 6. K8s forced reconnection time (experiment 12).

be unavailable for a short period of time. In this regard, this
experiment aims to determine how long it takes to reestablish
the connection when the modules reconnect after a failure.
To do so, some of the CN modules have been forced to
fail randomly. Fig. 6 depicts the Kubernetes deployment’s
reconnection attempts. If any of the modules involved in the
registration and storing of UE information fails, the system
would lose connection. This behavior may be seen in tests 2
and 5. This is because the K8s descriptor file does not contain
volumes to store the UE’s sensitive data, and if one of these
storing modules fails, the data is lost. When a deployment pod
fails, Kubernetes will recreate it with the same functionality
but in an empty state. A K8s volume is a directory or hard disk
where sensible data may be stored and accessed by pods. This
project’s future work will consist of including these volumes
in the deployment file to avoid data loss from re-occurring.

Fig. 6 shows two distinct sets of reconnection time: t and
t+10 sec. This is related to the way the ”srsenb” module
operates. If the connection is lost, this module attempts to
reconnect every 10 seconds and repeats the process if the
previous attempts fail.

In terms of recovery time, the deployments are ordered
as follows: baseline (7s), all-docker-based project (5.5s), and
Kubernetes (5s). This outcome can be explained by the fact
that the latter two are containerized installations. Instead of
relaunching the whole deployment, each time a container
fails, only it gets restarted immediately. This shortens the
reconnecting time.

V. CONCLUSIONS

In this study, we have presented the architecture of a
containerized, distributed, and customizable K8s open-source
solution for cellular network deployments. It provides flexi-
bility, low set up time and ease of deployment. Based on this
prototype, we conducted an in-depth analysis that included
a comparison with a baseline of the open-source RAN and

CN frameworks employed, as well as a state-of-the-art project
that was entirely Docker-based. From this analysis, we can
conclude that the CPU consumption of the prototype is the
resource that is most influenced when varying injected traffic
and distance. RAM utilization, on the other hand, is more
susceptible to changes related to the number of physical
resource blocks allocated. Furthermore, the given K8s-based
prototype has been shown to be more robust to failures and has
a faster reconnection time than the baseline deployment. When
compared to the benefits obtained, the difference in throughput
and CPU use is negligible.

We planned the following future lines of work: (i) increasing
the number of registered UEs; (ii) resolving issues with non-
persistent UE registration data; (iii) extending the analysis per-
formed to other criteria, such as energy efficiency; (iv) testing
the deployment for 5G NSA and 5G SA equipment to ensure
the same performance; and (v) separating each core function
into a container or implementing them as microservices.

ACKNOWLEDGMENT

This work has been supported by the EU’s H2020 projects
5GaaS (958832) and AI@EDGE (101015922). The authors
would also like to acknowledge CERCA Programme / Gen-
eralitat de Catalunya for sponsoring this work. This work has
been also supported by the EU “NextGenerationEU/PRTR”,
MCIN and AEI (Spain) under project IJC2020-043058-I.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Com-
prehensive Survey,” Proc. of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] ETSI, “Network Functions Virtualisation (NFV); Architectural Frame-
work,” December 2014, ETSI GS NFV 002 V1.2.1.

[3] N. Kratzke and P.-C. Quint, “Understanding Cloud-native Applications
after 10 Years of Cloud Computing - A Systematic Mapping Study,”
Journal of Systems and Software, vol. 126, pp. 1–16, 2017.

[4] AWS, “AWS,” https://aws.amazon.com/, Accessed on 08.02.2023.
[5] S. Imadali and A. Bousselmi, “Cloud Native 5G Virtual Network

Functions: Design Principles and Use Cases,” in Proc. of IEEE SC2,
Paris, France, 2018.

[6] W.-P. Lai, Y.-H. Wang, and K.-C. Chiu, “Containerized Design and
Realization of Network Functions Virtualization for a Light-Weight
Evolved Packet Core Using OpenAirInterface,” in Proc. of APSIPA ASC,
Honolulu, HI, USA, 2018.

[7] D.-H. Luong, H.-T. Thieu, A. Outtagarts, and Y. Ghamri-Doudane,
“Cloudification and Autoscaling Orchestration for Container-Based Mo-
bile Networks toward 5G: Experimentation, Challenges and Perspec-
tives,” in Proc. of IEEE VTC Spring, Porto, Portugal, 2018.

[8] T. AHMED, E. Dubois, J.-B. Dupé, R. Ferrus, P. Gélard, and N. Kuhn,
“Software Defined Satellite Cloud RAN,” International Journal of
Satellite Communications and Networking, vol. 36, p. 108–133, 2018.

[9] herlesupreeth, “docker-open5gs,” https://github.com/herlesupreeth/
docker open5gs, Accessed on 08.02.2023.

[10] srsRAN, “srsRAN,” https://docs.srsran.com/, Accessed on 08.02.2023.
[11] open5Gs, “open5Gs,” https://open5gs.org/, Accessed on 08.02.2023.
[12] A. Esmaeily, K. Kralevska, and D. Gligoroski, “A Cloud-based SD-

N/NFV Testbed for End-to-End Network Slicing in 4G/5G,” in Proc. of
IEEE NetSoft, Ghent, Belgium, 2020.

[13] C. V. Nahum, L. De Nóvoa Martins Pinto, V. B. Tavares, P. Batista,
S. Lins, N. Linder, and A. Klautau, “Testbed for 5G Connected Artificial
Intelligence on Virtualized Networks,” IEEE Access, vol. 8, pp. 223 202–
223 213, 2020.

[14] containerd, “containerd,” https://containerd.io/, Accessed on 08.02.2023.
[15] javipalomares, “docker-images,” https://hub.docker.com/search?q=

javipalomares&type=image, Accessed on 08.02.2023.

