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Abstract—The incessant development of High Quality (HQ)
multimedia contents and the trend towards the use of wireless
technologies have as a consequence the need for providing the
users with an adequate level of Quality of Service (QoS) in
IEEE 802.11 networks. The IEEE 802.11e amendment aims to
overcome this situation by introducing the Enhanced Distributed
Channel Access (EDCA) access method. This new method is
characterised through a group of Medium Access Control (MAC)
parameters, which are able to classify and prioritize the different
types of traffic. In this regard, the most determining parameter
is the Arbitration Inter-Frame Space Number (AIFSN). On this
basis, we propose a new adaptation scheme that makes use of a
M5 regression model with the aim of improving the voice and
video performance offered by EDCA. Our proposal is able to
determine dynamically the optimum AIFSN values with regard to
the network conditions, maintaining the backward compatibility
with the stations that use the original IEEE 802.11 standard. The
prediction algorithm is only queried by the Access Point (AP),
without introducing additional control traffic into the network,
making it possible to use it in real-time. With respect to the
standard EDCA values, the results show an enhancement in the
voice+video normalized throughput and a significant reduction
in the number of the retransmission attempts.
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I. INTRODUCTION

Over the past few years, wireless technologies have become
imperative in the context of networking and communications.
Their simplicity of deployment, multimedia content support
and lower cost are displacing the traditional wired networks.
In order to define this networking model, the Institute of
Electrical and Electronics Engineers (IEEE) developed the
802.11 standard [1], which introduces the set of media access
and physical layers specifications for implementing Wireless
Local Area Networks (WLAN). However, the use of the
Internet and the consumption patterns are changing rapidly,
especially those related to multimedia contents. The nature
of such contents involves temporal restrictions that require
Quality of Service (QoS) mechanisms to ensure an adequate
level of satisfaction in the user perception. For this reason,
the IEEE 802.11e amendment [2] was released with the aim
of classifying and prioritizing the different types of traffic in
wireless networks.

One of the main features introduced by the IEEE 802.11e
amendment is the possibility of differentiating traffic flows
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and services. As a consequence, the QoS and the network
performance are notably improved. For this purpose, this
amendment defines a new contention-based channel access
method called Enhanced Distributed Channel Access (EDCA),
which allows for the prioritization of the different types of
traffic, making use of a set of user priorities. Nevertheless,
in some research it has been demonstrated that EDCA does
not provide the required QoS for real-time applications. This
situation worsens in the cases in which the network is partially
or fully composed of stations that only support the IEEE
802.11 standard and the traffic load level increases.

The application of artificial intelligence and data mining
techniques allows traffic patterns to be found in a network,
making it possible to prioritize each traffic flow accordingly.
As a result, a high level of QoS and a general improvement
in the performance are achieved. In this paper we propose
a prediction scheme for the Arbitration Inter-Frame Spacing
Number (AIFSN) priority values based on network conditions,
focusing on the temporal restrictions of the voice and video
transmissions and maximizing their normalized throughput.
This operation can be performed dynamically in the Access
Point (AP) without altering the devices, therefore maintain-
ing full compatibility. Furthermore, the adjustment of these
parameters does not introduce additional control traffic into
the network. In short, the main contribution of the proposed
model is to address the existing limitations of the IEEE
802.11e amendment, providing QoS mechanisms for multi-
media transmissions and maintaining the compatibility with
existing devices.

The remainder of this paper is organized as follows. Section
II reviews the IEEE 802.11e amendment and gives some
background information on the points that aim to improve
the QoS level offered by EDCA. In Section III the process
of supervised learning of the chosen model is described. In
Section IV, we present the proposed prediction scheme and
the process followed throughout its design. The results of the
performance evaluation and a comparison with the standard
AIFSN values are described in Section V. Finally, Section VI
provides some concluding remarks on our proposal.

II. QOS IN IEEE 802.11 NETWORKS

Initially, the original IEEE 802.11 standard introduced
two medium access functions: the Distributed Coordination
Function (DCF) and the Point Coordination Function (PCF).
However, these access functions are not able to differentiate
the traffic flows and provide the required QoS. Therefore, the



Fig. 1. EDCA Access Categories Mapping

IEEE formed a working group with the task of developing the
IEEE 802.11e amendment that considered these aspects.

A. IEEE 802.11e

The IEEE 802.11e amendment was developed with the
aim of providing QoS support and meeting the voice and
video streams requirements over IEEE 802.11 WLANs [2].
As backward compatibility must be kept, a distinction is
drawn between the stations that support QoS (QSTAs) and the
stations that do not offer such support (nQSTAs), only using
DCF. For this purpose, the 802.11e amendment implements
the Hybrid Coordination Function (HCF) and, thus, its two
contention-based channel access methods: HCF Controlled
Channel Access (HCCA) and EDCA. To this end, the HCF
coordination function implementation is mandatory for all
the QSTAs. Nevertheless, only EDCA is supported by the
commercial network cards on current devices as a method for
accessing the wireless medium.

The EDCA channel access method distinguishes between
eight different User Priorities (UPs). Moreover, four Access
Categories (ACs) are defined, which are derived from the
UPs and are able to classify and prioritize the traffic streams.
In this way, in order from highest to lowest priority, Voice
(VO), Video (VI), Best Effort (BE) and Background (BK)
access categories are considered, as shown in Figure 1. Each
one of these ACs works on its own transmission queue and
is characterised by an EDCA parameter set. This EDCA
parameter set specifies a priority level by using an AIFSN
value, a Transmission Opportunity interval (TXOP) and the
duration of the Contention Window (CW). Thus, the AP sends
this EDCA parameter set through beacon frames to the stations
of a Basic Service Set (BSS). The IEEE 802.11e amendment
allows the APs to modify the aforementioned values. However,
no mechanism is considered in this amendment for carrying
out this task and most commercial devices do not implement
such a service.

The AIFSN determines the Arbitration Inter-Frame Spacing
(AIFS), which is the period of time that a station has to wait
until it is allowed to initiate a new transmission. The AIFS for
each AC is shown in Equation 1, where the SlotTime denotes
the duration of a slot according to the physical layer, and

TABLE I. DEFAULT EDCA PARAMETER SET

AC CWmin CWmax AIFSN TXOP

AC BK aCWmin aCWmax 7 -

AC BE aCWmin aCWmax 3 -

AC VI (aCWmin+1)/2-1 aCWmin 2 6.016 ms

AC VO (aCWmin+1)/4-1 (aCWmin+1)/2-1 2 3.264 ms

the Short Inter-frame Space (SIFS) refers to the amount of
time used by high priority actions that require an immediate
response.

AIFS[AC] = AIFSN [AC] · SlotT ime+ SIFS (1)

Moreover, the stations are assigned an AIFSN value ac-
cording to their priority, which must be higher than or equal to
2. In order to provide a fair transmission for the DCF stations,
the IEEE 802.11e amendment defines a standard combination
of AIFSN parameters, as shown in Table I. Meanwhile, the
CW size determines the length of time that a station must
wait until it is able to conclude the Backoff algorithm. In this
way, the CW values are assigned in the inverse order to that
of the priority of the corresponding AC. Similarly, the TXOP
duration is longer for ACs with greater temporal restrictions.

With regard to these parameters, the AIFSN plays the most
important role in order to ensure optimum traffic differentia-
tion. In [3], J. Villalón et al. show several scenarios in which
a set of values for the AIFSN and CW are taken into account.
In this case, they prove that the AIFSN has a greater relevance
when identifying priorities than the CW. This conclusion was
also reached by J. Hui et al. in [4], who proved that both the
collisions and access media delay decrease, allowing for an
improvement in the network’s global throughput.

B. Dynamic adaptation in IEEE 802.11e

Wireless network conditions, such as the network’s load,
can change over time. Consequently, several dynamic pro-
posals that consider the aforementioned circumstances have
emerged. Their main aim is to adapt the EDCA parameter
set, i.e. to identify the optimal values for the AIFSN, CWmax,
CWmin and TXOP parameters.

An approach with this same goal is presented in [5], where
R. He et al. take into account three possible load levels,
showing the behaviour of the proposed scheme under different
network conditions. This proposal achieves a reduction in the
number of retransmission attempts and an enhancement in the
network performance. In spite of this, there is a drop in the
amount of voice and video information transmitted, which
impairs its temporal restrictions.

In [6] T. Nilsson et al. introduce an adaptation scheme
by using the CW size, achieving better results than EDCA.
However, compatibility with legacy DCF stations is not con-
sidered. A. Banchs et al. introduce in [7] a new way of offering
backward compatibility with the DCF stations. This algorithm
is able to prioritize the voice and video traffic streams over the
others. As the priority of the DCF stations cannot be modified
by updating the EDCA parameter set, the CW size is increased
by retransmitting packets that are properly received by the DCF



stations. In this way, the priority of the stations that use this
medium access function decreases. Nevertheless, unnecessary
traffic is introduced into the network.

The design of an analytical model to improve the network
performance has also been taken into account. Nevertheless,
most of these models make assumptions that may not be
fulfilled in real transmissions. In [8] J.R. Gallardo et al. define
a model by using Markov chains. However, they consider
the same bit rate for all the stations. In a similar way, the
mathematical model presented in [9] by A. Banchs et al. is
only tested under network saturation conditions.

As can be seen, most of these approaches are not able to
keep backward DCF compatibility and simultaneously provide
a dynamic adaptation of the EDCA parameter set without
introducing additional traffic.

III. SUPERVISED LEARNING WITH M5RULES

In supervised learning [10, 11], the information relative to
objects or instances is represented by a set of n input features,
X = (X1, . . . , Xn), and an output variable, Y . The process
consists of learning a model, hΘ(x), from a training dataset,
(X,Y ), which contains the information relative to several
objects whose current outputs are already known (that is why
it is called supervised). The model is then used to predict the
output value y for new cases when only the values of their
input features (x) are known. In case of regression problems,
Y ∈ R, and therefore hΘ(x) ∈ R. In classification, however,
the goal is to determine the class of a certain instance. In such
a case, Y ∈ {c1, . . . , cK}.

In the context of this work, for instance, supervised learn-
ing is used for regression. X represents the configuration of
the different parameters used for managing the multimedia
traffic in a network, whereas the output Y represents the
throughput achieved by the setting. Thus, hΘ(x) ∈ R returns
the predicted throughput of the network, y, given the parameter
configuration x.

There is a large number of supervised learning models for
regression, such as Linear Regression [12], Neural Networks
[13], Support Vector Machines [14], or Regression Trees [15].
The choice of a certain model depends on several factors. Thus,
some are more powerful than others, i.e., achieve more preci-
sion and can detect more relevant patterns in data. However, the
ease in which they can be interpreted can be an issue in some
scenarios. Models such as Neural Networks are considered
Black Box models, as the information related to underlying
patterns in data can not be drawn from them. In contrast,
regression trees are very easy to interpret, and provide useful
information on the relation between input and output features.
Another important issue concerns computational complexity.
For instance, obtaining y from x with a Neural Network
implies some matrix multiplications, and can be too slow in
some settings. However, processing a regression tree might
only require a few comparisons.

A. M5Rules

In the context of this work, it must be taken into account
that the selected regression model must be used in real-
time to determine which parameter setting produces a higher

Rule: 1

IF

VI_channel_occupancy <= 0.341

THEN

max_th[0] =

-0.0449 * global_channel_occupancy

+ 0.0701 * DCF_channel_occupancy

+ 0.1152 * BE_channel_occupancy

- 0.0392 * VI_channel_occupancy

- 0.279 * VO_channel_occupancy

+ 2.0059 [151/2.844\%]

Fig. 2. Example of rule induced by M5Rules

throughput. It is important then, that the output can be quickly
obtained. It is also important that the obtained model can be
interpreted, analysed, and even modified after having been
learned.

The M5 algorithm [15] represents hΘ(x) ∈ R as a
regression tree, and it is very similar to its counterpart, c4.5
[16] which is used for classification problems.

A regression tree represents a partition of the input space.
Each node contains a condition defined over some input
attribute Xi. For instance, if a node of the tree is defined by
the condition [VI_channel_occupancy <= 0.341],
it represents the one branch which would be used
to process all objects so that their value for variable
VI_channel_occupancy is smaller than 0.341, whereas

the other branch would be used to process the rest of the cases.
Each leaf represents an input subspace, and corresponds to all
the cases which fit the conditions represented by the path from
the root of the tree to the leaf.

In M5, there are two possibilities to obtain the output values
for the cases falling into a leaf of the tree. The first one, namely
regression tree, uses the mean output value of the training
data falling into that leaf as default prediction. The second
one, namely model tree, learns a multivariate linear regression
equation from the training data corresponding to the leaf, and
uses it to predict the output values.

The algorithm used in this work, namely M5Rules, is
included in the weka package for machine learning [17]. It first
learns a regression (or model) tree from training data by means
of the implementation of M5 included in this package, namely
M5P; and then extracts a set of rules. Figure 2 shows an ex-
ample of the obtained rules. So that the value of all objects for
variable [VI_channel_occupancy <= 0.341], the
output value is obtained as a linear expression from the rest (5)
of the variables. The information [151/2.844\%] indi-
cates that 151 objects of the training dataset fall into that leaf,
and that the relative error obtained with the linear expression
for those objects is 2.844%.

IV. AIFSN TUNING SCHEME

A. Proposal Description

Recently, the consumption of multimedia contents through
wireless networks has shown a considerable increase. In this
regard, the research on QoS has become especially relevant
since the IEEE 802.11e amendment was published. However,
there has been a recurring problem in such research due to the



existence of stations that only support the original IEEE 802.11
standard. Most of these efforts are focused on improving the
features of the EDCA channel access method. However, even
though the different EDCA parameters can be adapted to
network conditions, no changes can be made in the case of
DCF stations.

In IEEE 802.11e, EDCA allows it to adapt the access
channel parameters over time in a dynamic way. Neverthe-
less, this feature is not used in commercial APs due to the
complexity involved in determining the network conditions.
Furthermore, the process in charge of carrying out this task
should be as simple as possible due to the fact that the updating
of the network information must be carried out in real-time.
For this reason, the standard values of the EDCA parameter
set specified in the aforementioned amendment are usually
considered by the stations that use EDCA, regardless of the
network saturation level.

The main goal of our proposal is to enhance the offered
QoS level and maximize the performance of the voice and
video traffic. To achieve this goal, our scheme aims to identify
the optimal AIFSN values and adapt them to the network
conditions in order to enhance the performance offered by the
standard EDCA parameter set. At the same time, it seeks to
ensure backward compatibility between the stations that use
EDCA and DCF in the BSS. Our main aim is to enhance
the audio and video performance by decreasing the collisions
between these application types. Accordingly, a reduction in
the global retransmission attempts and an increase in the
network’s overall performance are achieved.

When a transmission takes place, there is a large number of
variable parameters that may determine the channel conditions.
Accordingly, deploying an adaptive scheme for the priority
setting through the AIFSN values is not a simple task. The
main conditioning factors are described below.

• Number of active applications of each type of traffic.
This is a parameter that can be identified in a simple
way by the AP. However, this value at a particular
moment in time is insufficient. That is because it
cannot provide further information about the current
conditions of the network, i.e., the scheme will not be
allowed to obtain real information about the current
occupancy of the wireless channel.

• Applications bit rate. Linked to the previous one,
this factor provides more detailed information about
the state of the wireless medium. Unfortunately, it
is difficult to calculate in real-time. To identify these
values it is necessary to introduce periodical control
traffic in the network. Nevertheless, this feature is not
typically used in IEEE 802.11e.

• Transmission rate. Every single station may carry out
its transmissions by using a different transmission
rate. Therefore, the specific period of time that each
of them keeps the channel busy is different. This
parameter would be a good way of estimating the
network conditions. Nonetheless, this value needs to
be used jointly with the above factors.

• Presence or absence of DCF legacy stations. The
existence of DCF applications restricts the use of

TABLE II. PROPOSED SET OF AIFSN VALUES

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

BK 7 8 9 8 9 12 10 12 14 14

BE 3 4 5 4 5 6 6 8 10 12

VI 2 2 2 3 3 3 4 5 6 7

VO 2 2 2 2 2 2 2 2 2 2

priority parameters in EDCA due to the fact that these
values cannot be duly adjusted for these stations.

Due to the inherent variability of the aspects that are part of
a wireless network transmission, we must consider a scheme
with low computational complexity and capacity to adapt itself
to changes over time. On the basis of these requirements,
artificial intelligence techniques are used in order to identify
and interpret traffic patterns. Furthermore, such techniques are
capable of making decisions based both on their previous
decision and the behaviour of the network.

In order to address such a problem, we have considered
the design of a M5 regression model. Before deciding on the
use of this classifier, many others, such as the Naive Bayes
classifier, have been taken into account. However, the main
features of this classifier are its low computational complexity,
its self-explanatory capacity and its high degree of adaptability
to the problem as is described in Section III. In [3] and [4]
it is concluded that the AIFSN is the most important factor
in the EDCA parameter set. As a consequence, the main
function of the designed M5 regression model is to identify
the AIFSN combination that achieves the highest voice+video
normalized throughput in every single moment regardless of
network saturation.

In this context, 9 sets of AIFSN values are selected as
candidates to be considered by the model. These values can
be seen in Table II. These values have been chosen by
gradually increasing the difference in slots of time between
the different ACs. For that reason, the AIFSN value related
to each AC is suitably separated from each other. However,
in those cases in which the AIFSN for video traffic is higher
than 2, its priority to access the wireless channel is reduced
with regard to the legacy stations. These combinations aim
to outperform the results offered by EDCA, enhancing the
voice+video normalized throughput and the overall network
performance, mainly by reducing the collisions between the
different types of traffic.

In order to design an accurate classifier, a large amount
of information must be provided during its construction. The
information must contain a wide range of different network
conditions in order to acquire enough knowledge. For this
reason, previous to the learning process, a huge set of tests is
carried out by considering several factors that may compromise
the network performance and that are described in Subsection
IV-B. As part of these tests, the aforementioned 9 sets of
AIFSN values are considered with the aim of finding an
alternative value to the standard one in order to enhance the
performance of the network.

Once the results of the aforementioned tests have been
obtained, they must undergone a significant pre-processing.
Initial tests included several outcomes, such as the number
of applications of every type of traffic or the percentage of



Fig. 3. Proposal Description

occupancy of the wireless medium. Nevertheless, this fact
is unacceptable since part of our main aim is to develop
a regression model as simple as possible. Due to the wide
variety of resulting parameters, it was necessary to perform a
variable selection to discard those that were unrelated. After
carrying out this supervised variable selection, only the global
occupancy level of the wireless channel and the particular
level of each type of traffic are considered by the model. The
purpose of this regression model is to maximize the sum of
voice and video normalized throughput by using a group of
regression functions. For this reason, this last value is added
as a parameter to the model due to the fact that this is the
factor that the regression model must maximize. Furthermore,
the final model is made up of ten groups of sub-models, i.e.
it contains one group of rules per AIFSN tested combination,
which attempt to achieve the highest voice+video performance.
These few factors are able to provide a good approximation
of the network conditions while allowing the construction of
a simple and accurate regression model.

The described parameters are used as an entry point for the
M5 regression model and must be calculated periodically. In
our case, they will be calculated once per second. After this
period of time, the classifier checks whether the previously
selected AIFSN values are already the most favourable combi-
nation or whether they need to be modified. Once the optimal
AIFSN set has been calculated by the AP, it is responsible
for distributing these values embedded in an EDCA parameter
set. Distribution is handled through the beacon frames and,
therefore, no additional control traffic is introduced into the
network. This behaviour is shown in Figure 3.

Thus, the proposed scheme has low complexity due to the
fact that the AP only has to perform simple operation checks
by using the described model, and there is no need to trans-
mit additional control traffic. Furthermore, this scheme only
requires making a few minor adjustments to the APs and no
changes are made to the commercial network cards. Therefore,
total compatibility with existing devices is maintained at the

TABLE III. TRAFFIC PARAMETERS USED FOR CLASSIFIER

CONSTRUCTION

Packet size Data rate

DCF 552 bytes 512 Kbps

BK 552 bytes 512 Kbps

BE 552 bytes 512 Kbps

VI 1064 bytes 800 Kbps

VO 104 bytes 20 Kbps

same time an enhancement in network performance is made
possible, especially for voice and video traffic.

B. M5 Regression Model Design

The design and construction of the M5 regression model
need to have a considerable amount of proper information
that must be acquired during the training period. In our case,
this information is obtained from the results of a set of tests
that is previously performed, aiming to cover a wide range
of possible scenarios with different network conditions. This
process makes the construction of the most accurate model
possible. In this regard, a group of 18 scenarios has been
designed and tested by using Riverbed Modeler 18.0.0 [18].
These scenarios take into account applications that utilize
EDCA and those that only make use of DCF as a channel
access method. In this way, our proposal can guarantee full
compatibility with those stations that only support the original
IEEE 802.11 standard.

The aforementioned scenarios are made up of a variable
number of stations, considering different percentages of uplink
transmissions of every type of traffic (BK, BE, VI and VO). On
this basis, the traffic load level is increased in every scenario in
steps of 10 stations, causing the number of stations to range
from 10 to 80. As a result, eight combinations of the same
scenario with different traffic load levels are tested. In order
to ensure that the proposed scheme is able to adapt itself to
the network conditions independently of the transmission rate
of the stations in the BSS, two different values for this factor
have been considered to carry out the tests. In this way, all
the applications share a transmission rate of 12 Mbps and 36
Mbps, regardless of the type of traffic that they transmit. In
order to provide a further evaluation, all the tests have been
carried out by using 60 different random seeds.

Each station of the BSS transmits a different type of traffic
whose characteristics are shown in Table III. Furthermore, the
bit rate of the different types of traffic is modelled by using
a group of probability distributions. Table III shows that the
stations that only support DCF and those that use EDCA to
transmit BK and BE traffic use the same transmission source.
This source is modelled by making use of a Pareto distribution
with a location of 1.1 and a shape of 1.25. By contrast, voice
traffic represents a Constant Bit Rate (CBR) service using
the G728 codec [19], whereas video applications transmit
H.264 [20] streams. In addition, multimedia applications have
temporal restrictions that are important to be modelled in the
scheme. For this purpose, deadline periods of 10 ms and
100 ms are considered for voice and video transmissions,
respectively. In this way, when any packet remains in the
transmission queue for longer than the indicated thresholds,
it is discarded.



The different tests to analyse the model are performed
by making use of the proposed AIFSN values that can be
seen in Table II. Among the values that this table contains,
the AIFSN combination proposed in IEEE 802.11e has also
been considered due to the fact that it achieves the highest
performance in certain cases. Therefore, it is a suitable com-
bination to be chosen by the classifier. Furthermore, the results
of this combination are compared with the ones achieved
by our proposal. During the execution of each test scenario,
the conditions of all the factors that determine it remain
static. These values are modified according to a given order
until all possible combinations of such parameters have been
considered. In this way, the regression model is allowed to
acquire real knowledge. If variable information were provided
to the classifier during its development, the learning process
would be unfeasible.

Moreover, both the data pre-processing and the design of
the M5 regression model are carried out using Weka 3.7.0 [21].
During the aforementioned design, a 10-fold cross validation
process is performed in order to guarantee that both the
training and the testing data sets are independent. This process
achieves an average correlation coefficient of 0.8916 and a
mean absolute error of 0.0554. The above values show the
accuracy of the proposed model and the high relation between
the parameters involved.

V. PERFORMANCE EVALUATION

In this section, we carry out a performance analysis in order
to verify the proposed scheme via simulation, making use of
Riverbed Modeler 18.0.0. In this regard, a set of 20 scenarios
have been designed, covering a wide range of different network
conditions. In this way, the main features of the evaluation and
the results obtained during this process are shown below.

During the performance evaluation, both stations that use
DCF and EDCA have been included. The first twelve scenarios
take into account both types of stations while in the remaining
eight only EDCA stations can be found. All these scenarios
are made up of 100 stations, involving an equal proportion of
applications of each type of traffic, i.e. 20 stations per type
of traffic are included in the BSS. Despite this fact and with
the aim of considering a wireless network as real as possible,
all the stations are not active at the same time. Instead, a
specific transmission probability has been assigned to every
station according to its AC, as shown in Table IV. These
probabilities and the variable number of active stations allow
for the evaluation of our proposal under different network
saturation conditions.

The scenarios have a duration of 300 seconds and are
divided into two periods. During the first one, the stations
that are not transmitting any information try to start a new
transmission every 30 seconds with a probability associated
with their AC (see Table IV). During the second one, the
transmitting applications attempt to stop the transmission every
30 seconds with the same probability as that previously used.
With this approach, many scenarios with a multitude of traffic
loads are considered. Due to all scenarios being simulated
by using 60 different random seeds and each of them being
divided into 20 time intervals, in the end 24000 different
intervals have been tested.

TABLE IV. DESCRIPTION OF THE SET OF TEST SCENARIOS

Scenario Number Voice Video BE BK DCF

1 10% 1.5% 2% 2% 2%

2 10% 5% 2% 2% 2%

3 10% 7% 2% 2% 2%

4 8% 6% 3% 3% 7%

5 4% 2% 3% 3% 10%

6 3% 3% 4% 4% 8%

7 5% 3% 7% 7% 4%

8 6% 6% 10% 5% 5%

9 6% 9% 6% 6% 6%

10 8% - 8% 8% 8%

11 - 6% 6% 6% 9%

12 6% 6% 6% 6% 6%

13 10% 8% - - -

14 8% 4% - - -

15 6% 10% - - -

16 7% 7% 7% 7% -

17 10% - 8% 8% -

18 - 8% 7% 7% -

19 9% 8% 6% 6% -

20 9% 7% 8% - -

The bit rate of all the applications used during the whole
performance evaluation process is assigned according to their
AC. These values are the same as the ones in Table III. More-
over, the stations are randomly distributed over the network
coverage of the BSS. In addition, different transmissions rates
have been taken into account for all the applications regardless
of the type of traffic they transmit. In this way, and with the aim
of modelling signal propagation through the wireless medium,
the Ricean [22] model has been considered. This model is
characterized by a factor, k, which determines the ratio between
the power in the line-of-sight component and the power in the
scattered paths. In our case, a k factor of 32 has been used.
Furthermore, in all the analysis, IEEE 802.11g [23] defines the
physical layer of the network.

In order to evaluate the performed simulations, a large
amount of statistical information has been obtained. However,
some of them have been selected in order to consider only the
factors that are able to summarize the main results. The metrics
that have finally been considered include the voice+video
normalized throughput, the number of retransmission attempts,
the overall throughput of the network and the normalized
throughput achieved by the stations that use DCF. As the main
aim of our proposal is to enhance the performance of the voice
and video applications, the first of these statistics refers to the
sum of the normalized throughput of such applications.

In Table V, the voice+video normalized throughput re-
sults for the 24000 simulated intervals are shown. This table
presents the percentage of 30 second transmission intervals
during which our proposal has experienced losses or gains
of voice+video normalized throughput with regard to the
existence of DCF traffic. These values have been calculated in
comparison with the results obtained from the standard AIFSN
combination. Moreover, this table includes the cases in which
the results are unaltered. We have considered as unaltered the
results in which the gains or the losses are lower than 1%.
Furthermore, those cases in which our proposal experiences a
decrease in the level of performance higher than 1% have been
designated as losses.



TABLE V. VOICE+VIDEO NORMALIZED THROUGHPUT

IMPROVEMENTS IN 30S INTERVALS

With DCF traffic Without DCF traffic

Unaltered 52.11% 31.30%

Losses 5.48% 1.44%

Gain [1%-5%] 23.37% 17.35%

Gain [5%-10%] 12.78% 5.93%

Gain [10%-15%] 2.86% 6.89%

Gain [15%-20%] 1.52% 4.55%

Gain [up to 20%] 1.90% 32.55%

It can be observed in Table V that in a large number
of cases, the results of our proposal remain unaltered. This
situation is a consequence of taking into account low traffic
load levels in a significant amount of the tested scenarios where
all the AIFSN combinations achieve the highest performance.
In particular, in presence of DCF traffic and depending on the
network saturation, the percentage of unaltered scenarios is
higher for the scenarios with DCF traffic than for those that
only take into account EDCA stations (52.11% and 31.30%,
respectively). Moreover, there is a small percentage of cases
where our proposal experiences small losses in performance.
These losses represent 5.48% of the cases in presence of DCF
stations, while this value is lower when only stations that use
EDCA are considered. This situation is due to a group of
wrong decisions made during the test by the M5 regression
model. Furthermore, the usage of a single parameter allows
it to have a good approximation of the network conditions,
but it does not allow it to identify the network conditions
completely. Nevertheless, the number of scenarios in which
this situation occurs is much lower than those in which our
proposal improves upon the performance offered by EDCA.
In fact, the results show that the performance improvement is
up to 20% in many cases. Finally, it can be clearly seen that
the gains achieved by the proposed scheme are up to 20% in
32.55% of the scenarios in the absence of DCF traffic.

The scenarios shown in Figures 4, 6 and 7 are a repre-
sentative subset of those where the traffic proportion is more
problematic for EDCA usage. The first five scenarios take
into account both DCF and EDCA stations. However, in the
remaining three only EDCA stations are considered. In Figure
5 only scenarios with both types of stations are considered due
to the fact that the DCF normalized throughput is evaluated.

During the simulations, twenty intervals with many differ-
ent traffic load levels are taken into account. The first and the
last five intervals have the lowest traffic load due to the fact
that all the stations are starting or ending their transmissions.
When the traffic load is low, all the tested AIFSN combinations
offer the highest throughput. In this way, the results of both
the standard AIFSN combination and those of the proposal
are identical. For this reason, only the ten remaining intervals
are shown in Figure 4, in which the standard values start to
suffer traffic losses. In this figure, the voice+video normalized
throughput is shown. It can be observed that in all cases the
throughput achieved by our proposal is higher than when using
the standard AIFSN values. Furthermore, it is shown that the
difference is even greater in scenarios without DCF traffic. In
these cases, an improvement of up to 35% can be obtained.

The gradual separation of the AIFSN values assigned
to the different ACs, especially in the cases in which the
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Fig. 5. DCF Traffic Throughput

AIFSN for video traffic is higher than 2, allows the stations
that support the original IEEE 802.11 standard to be given
a higher priority to access the wireless channel. Therefore,
our scheme is not only able to maintain the compatibility
with the aforementioned stations, but also to enhance their
offered performance. In this way, the eight most representative
scenarios in which DCF transmissions take place have been
selected in order to show this improvement (see Figure 5). In
spite of providing a higher priority to the legacy stations and
improving their performance, our scheme does not only not
penalize the voice and video applications, but also enhances
the throughput offered as can be seen in Figure 4.

The improvement achieved by our proposal is a direct con-
sequence of decreasing the amount of collisions in the network.
Furthermore, the proposed scheme offers a reduction in the
number of retransmission attempts as can be seen in Figure 6,
whose average value is around 16%. These decreases have a
direct impact on the improvement of the global throughput of
the network, which is illustrated in Figure 7. Suitable selection
of the AIFSN values contributes not only to enhancing the
performance offered by the voice and video applications, but
also to improving the remaining types of traffic performance
and overall network quality.

VI. CONCLUSIONS

The demand for multimedia services is growing fast, es-
pecially in real-time applications which require an adequate
level of QoS. On this basis, the use of artificial intelligence
techniques contributes to find traffic patterns and enhance the
network performance. In this paper, we have proposed a pre-
diction scheme for improving the voice and video communica-
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tions over WLANs, making use of a previously designed M5
regression model. With this aim, it is able to dynamically adapt
the standard AIFSN combination defined in IEEE 802.11e
while allowing for the compatibility with the stations that only
support the original IEEE 802.11 standard. This regression
model is only queried by the AP, transmitting the calculated
values to all stations without introducing additional control
traffic into the network.

The experimental results show that our proposal outper-
forms the voice+video normalized throughput of the standard
AIFSN combination, achieving an improvement of up to 20%.
It is also shown that a suitable separation of the AIFSN values
from each other for each AC leads to a reduction in the
amount of collisions between the traffic of different ACs. As
a consequence, the global throughput of the network is also
enhanced. Furthermore, and mainly due to its simplicity, the
proposed scheme is able to be executed in real-time.
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