
Graphical Abstract

Minimizing Active Nodes in MEC Environments: A Distributed
Learning-Driven Framework for Application Placement

Claudia Torres-Pérez, Estefańıa Coronado, Cristina Cervelló-Pastor, Javier
Palomares, Estela Carmona-Cejudo, Muhammad Shuaib Siddiqui

Research question and method Performance results

How to minimize the number of

active edge nodes in a distributed

MEC system environment to avoid

unnecessary energy consumption?

DDRL based Capacity-Aware

Application Placement (DDRL-CAAP)

Evaluation

Simulation
Real-world

testbed

Power consumption for configurations with

different number of nodes and algorithms

Mean reduction of

4.35% in power

consumption compared

to Random Selection

(RS) algorithm

Mean improvement of

98.3% in inference time

compared to Integer

Linear Programming

(ILP) algorithm

Highlights

Minimizing Active Nodes in MEC Environments: A Distributed
Learning-Driven Framework for Application Placement

Claudia Torres-Pérez, Estefańıa Coronado, Cristina Cervelló-Pastor, Javier
Palomares, Estela Carmona-Cejudo, Muhammad Shuaib Siddiqui

• Distributed Deep Reinforcement Learning (DDRL) based Capacity-
Aware Application Placement (DDRL-CAAP) approach for the place-
ment of applications in multiple MEC system environments.

• Reduction of the number of active edge nodes and compliance with
Sevice Level Agreement (SLA).

• Vertical application deployment impact on the DDRL-CAAP approach.

• Testing the model via simulation and on a real testbed to validate its
effectiveness under real-world conditions.

Minimizing Active Nodes in MEC Environments: A

Distributed Learning-Driven Framework for Application

Placement

Claudia Torres-Péreza, Estefańıa Coronadoa,b, Cristina Cervelló-Pastorc,
Javier Palomaresa, Estela Carmona-Cejudoa, Muhammad Shuaib Siddiquia

ai2CAT Foundation, Carrer del Gran Capita, 2, Barcelona, 08034, Catalonia, Spain.
bHigh-Performance Networks and Architectures, Universidad de Castilla-La
Mancha, Campus Universitario de Albacete s/n, Albacete, 02071, Castilla-La

Mancha, Spain.
cDepartment of Network Engineering, Universitat Politècnica de Catalunya, Campus del

Baix Llobregat, Castelldefels, 08860, Catalonia, Spain.

Abstract

Application placement in Multi-Access Edge Computing (MEC) must adhere
to service level agreements (SLAs), minimize energy consumption, and op-
timize metrics based on specific service requirements. In distributed MEC
system environments, the placement problem also requires consideration of
various types of applications with different entry distribution rates and re-
quirements, and the incorporation of varying numbers of hosts to enable
the development of a scalable system. One possible way to achieve these
objectives is to minimize the number of active nodes in order to avoid resource
fragmentation and unnecessary energy consumption. This paper presents a
Distributed Deep Reinforcement Learning-based Capacity-Aware Application
Placement (DDRL-CAAP) approach aimed at reducing the number of active
nodes in a multi-MEC system scenario that is managed by several orchestra-
tors. Internet of Things (IoT) and Extended Reality (XR) applications are
considered in order to evaluate close-to-real-world environments via simulation

Email addresses: claudia.torres@i2cat.net (Claudia Torres-Pérez),
estefania.coronado@i2cat.net (Estefańıa Coronado), cristina.cervello@upc.edu
(Cristina Cervelló-Pastor), javier.palomares@i2cat.net (Javier Palomares),
estela.carmona@i2cat.net (Estela Carmona-Cejudo), shuaib.siddiqui@i2cat.net
(Muhammad Shuaib Siddiqui)

Preprint submitted to Computer Networks October 2, 2025

and on a real testbed. The proposed design is scalable for different numbers
of nodes, MEC systems, and vertical applications. The performance results
show that DDRL-CAAP achieves an average improvement of 98.3% in infer-
ence time compared with the benchmark Integer Linear Programming (ILP)
algorithm, and a mean reduction of 4.35% in power consumption compared
with a Random Selection (RS) algorithm.

Keywords: Application placement, Distributed deep reinforcement learning,
MEC, Scalability

1. Introduction

Multi-Access Edge Computing (MEC) is a critical technology for the
advancement of 5G and the development of emerging 6G networks. MEC
environments typically involve various stakeholders, such as service providers,
system integrators, and application developers, necessitating management
mechanisms capable of logical coordination and operation across the system [1].
In this context, it is imperative to acknowledge the presence of not only a
single MEC environment as a unified system, but also the potential formation
of a distributed network comprising multiple MEC systems. These distinct
MEC systems are usually managed by different orchestrators, which adds
complexity to the system architecture.

Furthermore, MEC service management techniques must adapt to the
different application entry rates, requirements, and Service Level Agreements
(SLAs) across distributed scenarios. The literature outlines various objectives
that are pursued in order to meet the needs of use cases and fulfill SLAs. One
such objective is to minimize power consumption in beyond 5G networks [2]
for enhanced sustainability, reduced operational costs, and improved perfor-
mance. Efficient energy consumption contributes to the overall reliability
of networks, as beyond 5G services will consume a significant amount of
network resources [3]. Although MEC frequently involves devices with limited
resources and low power consumption, it is important to acknowledge that
edge computing environments comprise numerous distributed nodes. In this
context, an inefficient application placement mechanism may result in resource
fragmentation, thus leading to excessive energy consumption.

A common practice in service management strategies is balancing the
workloads between the network nodes [4, 5, 6]. However, each active node has
an overhead, which could result in excessive power consumption. Concentrat-

2

ing the load onto a minimal number of nodes makes it possible to maintain
a certain number of them in an idle state. Due to idle power consumption,
inactive nodes typically consume less power than those that are only lightly
loaded. The curve in [7] suggests that power consumption remains a lin-
ear function up to approximately 70% of CPU consumption. Beyond this
point, the curve adopts a constant trend from 70% to 100%. If the load is
distributed across all nodes, most nodes will operate at a lower CPU usage,
potentially in the linear low-power range. While this balances the thermal
and computational stress, it increases the overall power consumption because
it maintains the base power draw of multiple nodes. Operating the minimum
number of nodes at a higher load allows a more efficient use of energy.

The approach of minimizing the number of active nodes is a powerful
solution in MEC environments, wireless sensor networks [8, 9] and container-
ized platforms such as Docker and Kubernetes. Keeping more active nodes
than those that are necessary leads to higher energy consumption, which is
particularly problematic in environments such as wireless sensor networks,
where nodes are often battery-powered. Minimizing the number of active
nodes enhances resource efficiency by optimizing computational resources,
thus reducing operational costs. Besides reducing power consumption, which
is important in pay-as-you-go models, such as distributed cloud environments
[10], this approach can decrease system complexity, mitigate potential points
of failure, and ensure free space for placing services when needed. Thus,
research work on the minimization of the number of active nodes can lead to
sustainable and cost-effective systems in distributed computing environments.

Although considerable research has been conducted into reducing energy
consumption in edge computing [11, 12, 13] by minimizing the number of
active nodes or balancing the load between them, there are still several gaps
in the research that need to be addressed. For instance, the work in [11]
describes an application placement approach considering the limited energy
load of edge servers. However, this study did not consider the potential energy
savings and improved adaptability to dynamic user mobility that could result
from minimizing the number of active nodes, which would allow the system
to more efficiently reallocate resources and maintain optimal performance
and energy efficiency. Similarly, the authors of [12] introduced algorithms to
minimize service usage and distribute the load among the servers, effectively
reducing energy drainage, and the number of active edge servers. However,
their approach excluded the study of infrastructures with multiple MEC
systems. The work in [13] modeled the placement of deep neural network

3

(DNN) services on a minimal number of edge nodes. Nevertheless, it did not
consider the dynamic ingress/egress of applications in the system. Thus, there
is a need to develop a comprehensive strategy that not only aims to minimize
energy consumption on edge nodes, but also ensures node availability for
critical tasks and applications, leading to savings in the operational costs of
large edge infrastructures.

Moreover, the assessment of application placement solutions in the lit-
erature predominantly relies on simulation-based studies rather than real
testbed environments. The analysis needs to take into account how the
real hardware influences application placement algorithms. Additionally, an
important approach to consider is the scalability of a proposed solution. An
algorithm must be efficiently scalable and seamlessly manage a variable num-
ber of nodes, applications and MEC systems, without impacting performance.
This capacity of adaptation to different scenarios improves reliability and
maintains Quality of Service (QoS).

Building on our previous research [14], this paper focuses on minimizing
the number of active nodes in the edge infrastructure while considering
several vertical application requirements. We propose a strategic approach
for application placement within MEC systems, that is aimed at enhancing
overall system performance in response to dynamic demands. Additionally,
we examine the approach’s scalability for different numbers of nodes, for
diverse MEC systems, and for applications of varying durations within the
system, with a particular emphasis on MEC systems featuring Internet of
Things (IoT) and Extended Reality (XR) applications. This strategy intends
to address the challenges of operating in dynamic network environments that
closely mirror real-world scenarios. This paper also evaluates the potential
power consumption savings that can be achieved by applying our strategy for
active node minimization, as well as the approach’s scalability in terms of the
maximum number of MEC systems and nodes it can support, the application
requirements, and the entry rate. Furthermore, we study the extent to which
a real infrastructure impacts model performance and inference time. Thus,
the contributions of this work are as follows:

• This paper presents a Distributed Deep Reinforcement Learning-based
Capacity-Aware Application Placement (DDRL-CAAP) approach for
the placement of applications in highly distributed environments, con-
sidering an architecture that is fully aligned with the European Telecom-
munications Standards Institute (ETSI MEC) specifications [15]. This

4

approach aims to reduce the number of active edge nodes and ensure
SLA compliance.

• We evaluate the impact of deploying vertical applications with variable
duration and service requirements on the performance of the DDRL
approach.

• The model is tested via simulation and on a real testbed to validate
its effectiveness under real-world conditions compared with an Integer
Linear Programming (ILP) approach.

The remainder of this paper is organized as follows. Section 2 reviews
related works on the topic of application placement. The system model is
presented in Section 3, and Section 4 describes the problem formulation.
The proposed DDRL-CAAP model is introduced in Section 5, and Section 6
explains how the algorithm is incorporated into a real MEC system. Sec-
tion 7 describes the configuration of the test scenarios, and the performance
evaluation is discussed in Section 8. Finally, Section 9 concludes the paper.

2. Related Work

Research into application and workload placement employs diverse method-
ologies such as numerical analysis, mathematical optimization, and Machine
Learning (ML). Our literature review systematically categorizes works related
to application placement in edge and fog computing, focusing on energy mini-
mization approaches. Several surveys have detailed the different techniques
in scheduling and application management strategies in edge computing [16]
and serverless environments [17, 18]. A review study is presented in [16] that
looks at proactive caching strategies divided into heuristic-based, model-based,
and ML-based strategies. The authors of [17] classified the scheduling ap-
proaches according to the objectives pursued by the works surveyed. A study
in serverless computing is performed in [18], in which the authors classify
the approaches as ML-based, framework-based and model-based. The above
studies help to understand current optimization objectives in scheduling and
application placement problems, and the techniques applied to solve them.

The authors of [19, 20, 21, 22, 23, 24, 25] proposed various techniques for
service placement, aiming to optimize different objectives, such as quality
of experience, QoS, latency, throughput and service cost. The work in [19]
employed fuzzy logic to handle application placement on the basis of user

5

experiences. The approach involved dividing each application’s workload
into tasks, with the application being hosted on computational and gateway
nodes within fog nodes. Badidi et al. [20] presented a QoS-aware placement
method for IoT applications, utilizing a task scheduler to orchestrate all
tasks across a fog node cluster. A particle swarm optimization method was
proposed in [22] to perform IoT services placement. The research in [21]
introduced a further optimization technique for service placement, which
was evaluated with lightweight and heavyweight applications composed of
microservices. Yi et al. [23] proposed an approach for social-aware device to
device content sharing with proactive caching employing a basis transformation
with low complexity. The results demonstrated acceptable performance and
explain the complexity of the method. The work in [24] introduced a multi-
dimensional resource optimization problem to maximize the network power
control. The authors solved the mixed integer linear programming problem
with a branch-and-price solution and a suboptimal greedy algorithm to
facilitate the process, effectively maximizing the network management profit.
The greedy approach achieves less computational complexity compared with
the optimal solution, considering the average running time. The authors of [25]
presented a two-timescale accuracy-aware optimization approach for human
digital twin deployment at the network edge for assisting human-centric task
execution. The analyzed approaches obtained acceptable performance in
terms of completion time. Thus, applying reinforcement learning strategies to
adapt to real-time changes in network conditions and user behavior could lead
to an improvement in completion time, enhancing the system’s responsiveness
and efficiency.

In this regard, Deep Reinforcement Learning (DRL) has been widely used
in application placement [26, 27] due to its ability to model unforeseen scenar-
ios, handle learning directly from data and interactions with the environment,
and adapt to variations in the problem without the need to redesign the
approach. Sami et al. [26] sought an auto-scaling and placement solution
with DRL for multi-application integration into a service-based clustering
environment. The resource provisioning approach was based on a MEC archi-
tecture comprising a single orchestrator and a set of MEC servers. The work
in [27] considered a multi-orchestrator system for assigning the applications
to a specific MEC host while minimizing latency. While excellent work has
been presented in the application placement field, it is paramount to increase
the ratio of accepted applications, minimize power consumption, and consider
multiple MEC systems.

6

A promising area of research in the context of service management is the
reduction in energy consumption [28, 29, 30, 11, 31, 32]. The application of
distributed learning to the problem of energy-aware application placement has
been proposed to minimize inference time during exploitation and improve
performance when several workers intervene in the training process. For
instance, the authors of [28] sought to minimize execution time and energy
consumption for IoT applications. A DDRL approach is applied in [29], with
cooperative exploring and prioritized experience replay to increase energy task
efficiency and reduce the average processing time over an unmanned aerial
vehicle MEC network, considering its mobility and possible failures. Also
addressing energy consumption minimization, the authors of [30] presented
an energy-efficient scheduling algorithm to process user applications with real-
time requirements, implementing a trade-off between energy consumption and
task execution time. Similarly, Badri et al. [11] considered an energy-aware
application placement to maximize QoS, given the constrained energy budget
of the servers. For this purpose they utilized a greedy heuristic method. An
energy-efficient computation offloading approach was presented in [31], in
which the authors seek a trade-off between delay and energy consumption.
The authors of [32] employed a federated learning technique to optimize energy
consumption, execution cost, network usage, delay, and fairness in a multi-user
offloading approach for mobile edge computing. Although the above works
addressed the trade-offs between energy consumption, task execution time,
and task efficiency, they did not consider the advantages of minimizing the
number of active nodes.

The problem of minimizing the number of active nodes is not exclusive
to MEC systems, as it is also a challenge in other distributed architectures,
such as wireless sensor networks [8, 9], and containerized platforms such
as Docker and Kubernetes. The work in [33] provided an architecture ap-
proach for scheduling service workloads to minimize latency to end-users.
The authors of [34] presented a network-aware framework to perform the
placement of dependent microservices in long-running applications while also
minimizing latency and bandwidth reservations. They compared the approach
in simulation and testbed environments, and, in this case, the pods were
allocated next to each other to minimize the expected network latency. Both
works [33, 34] were focused on optimizing the service placement problem,
but they overlooked the reduction of power consumption through minimiz-
ing the number of active nodes and the possible minimization of costs this
could bring. Despite extensive research on performance optimization, load

7

balancing, and latency reduction, the energy efficiency of distributed systems
remains unexplored. Specifically, there is a critical need to investigate how
minimizing the number of active nodes affects energy consumption. This
includes dynamically adjusting active nodes in response to real-time workload
demands while ensuring service continuity and maintaining node availability
for unexpected high-demand scenarios.

Performing load balancing to achieve optimization objectives is the subject
of several research works. These objectives could include reliability maximiza-
tion, delay reduction and energy consumption minimization. For instance,
the work in [4] addressed the problem of microservice deployment with a
view to maximizing the system-wide reliability and satisfaction of task delay
requirements. Similarly, Ying et al. [5] proposed an Age of Task-oriented
Information (AoTI) approach for industrial tasks, minimizing long-term AoTI
for wireless sensor network applications, and optimizing access selection and
sampling frequencies for all sensors. Both works introduced a practical ap-
proach to meet the said objectives. Nevertheless, none of them examine how
the proposed approaches impact the power consumption of the nodes. The
authors of [6] aimed to minimize the long-term service delay of mobile devices
and ensure system stability by considering constrained energy consumption
and caching capacities. They proposed an algorithm to select between task
rerouting and service migration, based on the Lyapunov optimization method.
Their approach effectively reduced energy consumption through a system
that balances the computational workload of mobile devices and edge servers.
Applying the approach of minimizing the number of active nodes in these
works could provide valuable insights into its impact on energy consumption.

Conversely, demonstrating the scalability of an algorithm in a distributed
environment is a crucial factor to consider. The work in [28] achieved a
satisfactory performance in two scenarios involving variability in application
datasets. However, the authors did not present an explanation for variability
in the number of edge servers. The authors of [30] identified the influence
of varying time rates, but no discussion was provided on how a variation in
the number of servers would affect the algorithm’s outcome. An analysis of
algorithm scalability in relation to the number of channels and end users is
presented in [24].

Further study is required to extend the research that has already been
conducted. This should include multi-domain orchestration, with the potential
reduction in the number of active nodes considered as a technique to minimize
power consumption. Furthermore, it is necessary to evaluate the influence

8

Ref. Evaluation Techniques Performance Datasets
tools Used metrics

[6] Simulations Lyapunov average service delay, simulated data of range
method average energy of variables and distributions

obtained by references

[11] GCC, greedy heuristic relative objective ratio, smartphones dataset
OpenMP SAA request satisfaction ratio, for cybersecurity research

execution time

[26] Python DQN average cost of algorithm, Google cluster Usage
availability, average cpu usage, Trace dataset
resource load of services

[28] Python, X-DDRL execution time, energy Values obtained
testbed consumption, weighted cost, based on testbed

placement time overhead experiments

[29] Python DDRL-PER convergence rate, simulated data of range
energy-task efficiency, of variables and distributions
average processing task obtained by references

[30] Simulations heuristic energy consumption, success simulated data of range
solutions, rate, computation time of variables and distributions
GA obtained by references

[31] iFogSim HMM energy consumption, execution Author-generated data
cost, delay, network resource
usage, time interval

[22] MATLAB PSO services performed, simulated data of range
R2019a waiting time, failed services, of variables and distributions

services cost, services remaining, obtained by references
runtime

[32] iFogSim FL energy consumption, execution cost, data from VRGAMEFOG
network usage, application
delay, fairness

Our Python, DDRL-CAAP power consumption, simulated data of range
work testbed resource usage, inference time of variables and distributions

obtained by references

Table 1: Comparison of energy-aware methods in related works.

Note: GCC: GNU Compiler Collection, SAA: Sample Average Approximation, GA: Genetic Algorithm, FL: Federated
Learning, PSO: Particle Swarm Optimization, HMM: Hidden Markov model.

of different applications, edge configuration scenarios in simulation and real-
world testbeds, and the application acceptance rate in varying multi-edge
configurations. The findings of the works presented on minimizing energy
consumption are summarized in Table 1, which highlights the differences
between those works that pursued the same objective.

3. System Model

The system model presented in this paper is built upon an extended version
of the ETSI MEC reference architecture [15], which is specifically tailored to
accommodate distributed MEC systems through the ETSI MEC federation
interface [35]. The interface is used for information sharing between federated
MEC systems, enabling federation capabilities and operations to support

9

Network
orchestrator

MEC
orchestrator

Application
request

Node 1

Node 2

Node 1

Node 2

Node 1

Node 2. . .

. . .

. . .

MEC
orchestrator

MEC
orchestrator

. . .

MEC System 1 MEC System 2 MEC System

DRL
model

DRL
model

DRL
model

NodeNodeNode

Figure 1: System model: distributed MEC system architecture.

complex federated environments. As shown in Figure 1, the architecture
includes a network orchestrator at the highest level that oversees M MEC
systems managed by one MEC orchestrator (MEO) each. Without loss
of generality, we assume that application requests are forwarded from the
network orchestrator to the MEO of a given MEC system, and applications
are placed directly on the MEC nodes.

The application placement process begins with the network orchestrator
receiving an application placement request and forwarding the application
to a target MEC system. The placement request contains the application
descriptor, including the application’s requirements for storage, CPU, and
RAM. Within each MEC system m, each MEO executes a DRL model to
select the optimal MEC node to deploy the application. The DRL model
considers the application’s requirements and the MEC nodes’ availability to
make informed decisions about the MEC node for application placement,
thereby minimizing the number of active nodes. Section 5 presents the
DRL-based mechanism for MEC node selection.

10

Let M = {1, · · · ,M} represent the set of MEC systems in our network
architecture and Nm = {1, · · · , Nm} the set of nodes in the m-th MEC system.
For any given MEC system m, the computational resources of each node nm

in terms of storage, RAM, and CPU are respectively given by elements in the
tuple (1),

Cnm = {CST

nm
, CCPU

nm
, CRAM

nm
}. (1)

Let R = {1, · · · , R} denote the set of application requests arriving at the
network orchestrator following a Poisson distribution. Each request has a
duration that follows a uniform distribution within the range [Tmin, Tmax].
Moreover, each request r ∈ R is associated with a given type of application
k ∈ K = {1, · · · , K} that requires specific resource capacities in terms of
storage, RAM, and CPU, represented in (2),

Dr(k) = {DST

r (k), DCPU

r (k), DRAM

r (k)}. (2)

In order to analyze the scalability of our problem, experiments in relation
to the variability in the number of nodes Nm, number of MEC systems M ,
and types of applications K are conducted in Section 8.

4. Problem Formulation

This section provides the mathematical formulation for the application
placement problem, considering multiple MEC systems with several nodes.
For the sake of simplicity, we assume that each MEC system comprises
an equal number of nodes. We define an ILP problem to determine the
placement of each application request by selecting the MEC system and the
node with enough resources to meet the requirements. The objective is to
keep the maximum number of nodes on standby, thereby leaving nodes free of
applications whenever feasible, and minimizing resource fragmentation. This
ILP problem is called a One-Step Capacity-Aware Application Placement
(One-Step-CAAP) problem.

Thus, we define an iterative procedure that uses the One-Step-CAAP
model, at each step locating each incoming application request received
following a Poisson process. The iterative procedure shown in Figure 2
includes recovering resources from a request that ends at a given instant. It
also provides the migration of previously located requests if the completion
of a request has fragmented the available resources between several nodes in
such a way that they could be optimized. The overall goal is to minimize

11

Computational
resources of

the nodes

Application
request arrival

Resources

Update node
availability

Migration to
optimize

 One-Step- CAAP

Yes

No

Application
request finish

No

YesInference time
and accuracy

values

Figure 2: Iterative One-Step-CAAP procedure.

the number of active nodes subject to capacity constraints. This procedure
optimizes the model’s accuracy in selecting the most appropriate node, and
the following formulation models the behavior of the One-Step-CAAP problem.
Throughout the iterative execution, the nodes’ resources decrease according
to the occupation of the previous arrivals. Each step determines whether
the current request r can be located given the current available resources by
minimizing the number of active nodes (only activating new ones if there is
insufficient capacity in the active nodes). To formulate the One-Step-CAAP
problem, we define a binary variable xnm

m (3) as follows:

xnm
m =


1 , if current request is successfully deployed

at node nm ∈ Nm of MEC m ∈ M
0 , otherwise.

(3)

In addition, a binary variable z represents whether the new arrival is placed
in the system. Let’s assume that r− 1 requests have been successfully placed.
Then, the available resources in storage, CPU, and RAM resources upon

12

request r are given by (4),

Anm = {AST

nm
, ACPU

nm
, ARAM

nm
} = Cnm −

ρ=r−1∑
ρ=1

xnm
m ·Dρ(k), ∀ρ ∈ R, (4)

being ρ the set of ordered requests between 1 and R, then the One-Step-CAAP
model is:

min
1

M ·Nm

M∑
m=1

Nm∑
nm=1

xnm
m − z (5)

s.t. xnm
m ·DST

r (k) ≤ AST

nm
∀nm ∈ Nm, ∀m ∈ M (6)

xnm
m ·DRAM

r (k) ≤ ARAM

nm
∀nm ∈ Nm, ∀m ∈ M (7)

xnm
m ·DCPU

r (k) ≤ ACPU

nm
∀nm ∈ Nm, ∀m ∈ M (8)

if xnm
m = 1 ⇒ z = 1 ∀nm ∈ Nm, ∀m ∈ M (9)

if
M∑

m=1

Nm∑
nm=1

xnm
m = 0 ⇒ z = 0 (10)

xnm
m , z ∈ {0, 1} ∀nm ∈ Nm, ∀m ∈ M (11)

The objective function (5) consists in minimizing the number of active
nodes while maximizing the probability of placing the current request. Con-
straints (6), (7), and (8) ensure that the sum of the computational resources
demanded by the current request and all the previous requests allocated on
any node nm ∈ N of any MEC m ∈ M does not exceed the available capacity
in terms of storage, CPU or RAM. The non-linear constraints (9) and (10)
are implications that define the dependency between the variables xnm

m and z,
establishing that z is equal to 1 if the current request is placed at whatever
node of any MEC; and it is equal to 0 if insufficient availability exists to locate
the request at any node. By using linearization techniques, both non-linear
constraints can be linearized. Constraint (9) is equivalent to:

z ≥ xnm
m ∀nm ∈ Nm, ∀m ∈ M,

and constraint (10) is linearized with the following expression:

z ≤
M∑

m=1

Nm∑
nm=1

xnm
m .

13

Finally, all the variables are defined as binary in (11).
The ILP requires high computational time to obtain a solution, making its

use in real-time unfeasible. For this reason, this work chooses a DDRL-based
method, which makes it possible to find a time-efficient solution with low
computational complexity that is close to the optimal solution once the trained
model is obtained. Additionally, in scenarios where different MEC systems
host various applications, ILP models may need help with scalability and
responsiveness due to their deterministic nature and computational intensity.
A DDRL approach allows distributed DRL models to collaborate and learn
efficient application placement strategies tailored to each MEC system’s
application requirements and node availabilities. This enables the overall
system to optimize active node counts dynamically, enhancing efficiency while
adapting to changing conditions and demands in real-time. Additionally, when
we need to update the type of applications or their range of requirements, a
distributed DRL model can adapt to such changes. Section 5 presents the
modeling of the problem following the DDRL-CAAP approach.

5. Modeling Approach for Application Placement

This section builds upon the preceding discussion by describing the DRL
model and the DDRL-CAAP technique employed for distributed training and
inference. It also outlines a real-world use case to which the DDRL-CAAP
approach could be applied and the time complexity of the proposed algorithm.

In the context of DDRL training, one of the actors (the DRL model) is
placed in conjunction with each MEC orchestrator. The nodes’ availability and
application requirements, which are managed locally by each orchestrator, are
the inputs of the DRL model’s learning processes. Therefore, this method can
handle the learning processes performed by various DRL models, potentially
using different application types and requirements across various management
domains.

5.1. Deep Reinforcement Learning Model

Deep Q Network (DQN) is a variant of DRL [36] that employs experience
replay and deep neural networks to stabilize the training of the action value
function. DQN is comprised of a main and a target network, where the main
DNN estimates the current state and the action Q-values, and the target
DNN is utilized to approximate the Q-values of the subsequent state and
action. It remains static until a sufficient number of iterations have been

14

completed. The parameters from the main network are copied to the target
network, transferring the learning from one to the other and making the
estimates computed by the target network more accurate.

This work describes the application placement problem as a Markov
Decision Process (MDP). The DRL method selects the optimal policy for
the MDP, employing the local data for each MEC system. The MDP’s
state, action space, and reward function are crucial to performing the model
training.

The state space Sm of the DRL model corresponding to MEC system
m, defined in (12), contains the availability of storage, CPU, and RAM
resources on the nodes in the MEC system m, as well as the incoming
application requirements for each of these resources. Each DRL model
receives and processes the information about the availability of the nodes and
the application request corresponding to each specific MEC system.

Sm = {AST

nm
, ACPU

nm
, ARAM

nm
, Dr(k)}, (12)

where AST
nm

, ACPU
nm

, and ARAM
nm

define the remaining storage, CPU, and RAM
of all nodes thus:

AST

nm
= {AST

1 , AST

2 , . . . , AST

Nm
},

ACPU

nm
= {ACPU

1 , ACPU

2 , . . . , ACPU

Nm
},

ARAM

nm
= {ARAM

1 , ARAM

2 , . . . , ARAM

Nm
}.

The action space A is defined as the group of all the nodes in the m-th
MEC system, i.e., A = Nm. An action a is associated with the specific node
nm where the request is placed. The reward function is given by Eq. (13).
We define the reward wnm for a request r, demanding Di

r(k) resources ∀i ∈ b,
and for the action a = nm, as:

wnm =

{
0 if Ai

nm
= Ci

nm
,∀i ∈ b

10 · (22l − 1) otherwise,
(13)

where

l =


∑

∀i∈b

(
1− Ai

nm+Di
r(k)

Ci
nm

)
if all Ai

nm
≥ Di

r(k),∑
∀i∈b

(
Ai

nm
−Di

r(k)

Ci
nm

− 1
)

if any Di
r(k) > Ai

nm

(14)

15

and b ∈ {ST,CPU,RAM}.

Eq. (14) presents a variable l, which acts as a scaling factor based on
the usage levels and demand. For the first case (if all Ai

nm
≥ Di

r(k)), if
the constraints (6), (7), and (8) are satisfied, the reward is positive and
increases in value as the availability of the node decreases. The fraction
Ai

nm+Di
r(k)

Ci
nm

represents the proportion of the node’s capacity that is available

if the application demand is placed on the selected node. By subtracting
this fraction from 1, we obtain a measure of the capacity occupied, which
indicates the node’s proximity to its maximum capacity after placement.
Lower values of this expression mean more unused capacity after placing the
demand, while higher values indicate a usage closer to full capacity. The
total l is computed by summing this expression across all resources. The
sum allows the placement score to consider the combined availability across
different resource types, which is important since applications may demand
different combinations of resources.

The second case (if any Di
r(k) > Ai

nm
, and the constraints (6), (7), or (8)

are not satisfied) applies if the request exceeds the availability of the node,
and the function becomes negative, acting as a penalty and discouraging the
use of nodes that cannot satisfy the demand of the application. Therefore,
Ai

nm
− Di

r(k) is the deficit in resources if the demand is larger than the
available resources. By dividing by the computational capacity, we obtain
a normalized measure of this deficit relative to the node’s capacity, and by
subtracting 1, the negative value obtained serves as a penalty. Total l is
calculated as in the first case.

An exponential reward function significantly impacts the learning dynam-
ics in DRL agents, leading to faster convergence and more effective policies,
as an exponential function produces larger gradients for high-reward actions,
helping the agent distinguish between actions more effectively. In this case,
an exponential function boots the placement of applications on nodes with
less availability to ensure this case maintains the number of active nodes to a
minimum. With an exponential function, the agent becomes more sensitive
to high-reward outcomes, encouraging it to explore placements that maximize
system efficiency without overly favoring suboptimal configurations. There-
fore, in the following points, we explain how the reward function (Eq. (13))
minimizes the number of active nodes.

• Zero reward for idle nodes (if Ai
nm

= Ci
nm

,∀i ∈ b): By assigning a

16

MEC node Condition l wnm

1 Ai
nm

= Ci
nm

- 0
2 Ai

nm
≥ Di

r(k) 1.25 46.56
3 Ai

nm
≥ Di

r(k) 1.5 70
4 Di

r(k) > Ai
nm

-2.6875 -9.75

Table 2: Example of reward function and l values for a specific case.

reward of zero to completely idle nodes, the function discourages the
activation of nodes that are not required. This encourages the system
to activate the idle nodes only when necessary.

• Penalty for overloaded nodes with the incoming request (if any Di
r(k) >

Ai
nm

): The penalty term in l discourages placing applications on nodes
that would exceed their available capacity. The penalty prevents the
selection of nodes that cannot handle the incoming request.

• Higher reward for efficient utilization (if all Ai
nm

≥ Di
r(k)): When the

node capacity can meet the request, the model receives a positive reward
scaled by how closely the availability matches the demand. Therefore,
the decision encourages placing applications on nodes where resource
usage is efficient, maximizing utilization of active nodes and minimizing
the need to activate additional ones.

Let us outline an example to illustrate how the reward function addresses
the goal of minimizing the number of active nodes. If we consider a MEC
system composed of four nodes, with the same initial capacities C1 = {128 GB,
16 vCPU, 32 GB}, then C1 = C2 = C3 = C4. After a certain number of
application requests have been placed in the system, the current availability
of the nodes is the following: A1 = {128 GB, 16 vCPU, 32 GB}, A2 =
{64 GB, 10 vCPU, 6 GB}, A3 = {64 GB, 6 vCPU, 6 GB}, A4 = {64 GB,
2 vCPU, 4 GB}. Then the request r arrives with the requirements given by
Dr(1) = {8 GB, 4 vCPU, 4 GB}. Table 2 shows the values of the variable l
and the reward function wnm for each node. In this case, the reward function
promotes placement on nm = 3, selecting the node that is closest to the limits
of its capacity.

17

Learner

Network

Network Experiences

Environment

Replay

ActorNetwork
Parameters

Sampled experience

Updated priorities

Initial
priorities

Generated
experience

Node
availabillity

Application
requirements

Node placement
decision

Figure 3: DDRL selected scheme: ApeX architecture [37].

5.2. Distributed Deep Reinforcement Learning Model

This subsection describes the architecture utilized to build the DDRL-
CAAP approach. The training distribution allows parallelization, making it
particularly suitable for scenarios in which data management and ownership
may be independent across various domains. This is the case for the archi-
tecture proposed in this work, as described in Section 3. DRL, which relies
on trial and error, involves processing large volumes of data, which can be
computationally demanding. However, distributed algorithms for DRL allow
agents to learn efficiently and manage multiple tasks concurrently. The DDRL
algorithm distributes DRL models across multiple machines, with each model
replica using the data obtained from its specific environment. Each model
replica is a DRL model, and each of them receives the data arriving from
each MEC system environment. The data contains the application request
arriving at this specific MEC system, which was previously selected by the
orchestrator, and the availability of the nodes of each specific MEC system.
The approach chosen for distributed training in this work is ApeX [37].

Figure 3 shows the ApeX architecture. The main components are the
learner, the prioritized replay buffer, and the multiple actors performing a du-
eling DQN algorithm. Each actor runs in distinct MEC system environments,
enabling the collection of a diverse dataset. ApeX includes the concept of
distributed prioritized experience replay, which is based on the intuition that

18

some experiences can contribute more to an agent’s learning than others. The
objectives are accelerating convergence, reducing variance, and benefiting
from importance sampling and prioritized experience replay [38].

The actors perform a remote call to the learner to obtain the latest
network parameters, and each one starts interacting with its environment,
selecting and applying an action. In each actor, initial priorities are computed
and sent to the prioritized replay buffer, where they are combined with
the experience generated from transitions in the environment. The learner
samples a prioritized batch of transitions from the replay buffer, which the
actors previously sent there. It then applies the dueling DQN rule, calculates
priorities from experience, and updates it in the replay buffer. In addition, the
learner sends network parameters to the actors using the parameters gathered
from computed experiences. A sequence diagram illustrating this explanation
is depicted in Figure 4, which shows the relationship between the system
model components and the distributed algorithm at the training phase.

The implementation of distributed training, with agents operating at each
MEC system level, is designed to facilitate the acquisition of experiences based
on the diverse environments inherent to each of them. These environments
may exhibit discrepancies in the type of application or the type of nodes. The
experiences acquired by each agent are disseminated together with the weights
during the training phase. Consequently, in the model inference phase, if a
MEC system encounters features not observed during the training process,
retraining is unnecessary, and the model will respond appropriately.

The observations of the DRL agents are distributed to facilitate the
learning process. Different techniques have been proposed in the literature
to model the interactions between distinct components in an algorithm.
For instance, the work in [39] presents a novel hierarchical game to model
interactions between legitimate users, eavesdroppers, and existing jammers.
The authors implemented a hierarchical game between three parties to ensure
strategic interactions, first considering the maximization of the utility of
each party and then constructing a hierarchical game to model the decision
sequence and correlation of these problems. In this case, it is necessary
to organize the hierarchy because these parties could act strategically and
selfishly. Nevertheless, in our algorithm, no selfish behavior occurs among the
actors; they send the observation obtained for each of them: reward, state
information, and action obtained to the replay buffer. The experiences are
sent in equal conditions to the replay buffer and the learner, and the decision
of which experiences to share can be made by prioritizing sequences of past

19

Figure 4: DDRL-CAAP Sequence diagram.

20

experiences and not individual transitions. The experiences that contribute
most to the model are selected, and the learner does not discriminate between
agents.

5.3. Real-world Case Study

To showcase the applicability of this work, let’s consider the example of
a multiple MEC system environment in a city. The different MEC systems
could be geographically distributed depending on citizens’ demands. The
application requests are unpredictable, with specific areas having fluctuating
demands; IoT Fog demands could have high traffic in heavy traffic zones, while
XR applications could have more demands in certain events. Even if the model
has been trained on common application scenarios (e.g., XR in public parks
or IoT Smart applications in residential zones), it can generalize placement
strategies for unexpected scenarios (e.g., XR requests at intersections).

In high-demand events, an activation strategy needs to be coordinated.
If an event requiring high demand for XR applications arises, the applications
must be placed on nodes with high utilization, avoiding additional nodes
whenever possible; if the existing nodes activated are overloaded, the strategy
must go to those inactive nodes to maintain QoS. Therefore, these nodes are
available to host applications in high demand. Fewer active nodes translate to
lower energy consumption in a large MEC deployment across a city. Ensuring
nodes are used optimally without leaving nodes underutilized could avoid
resource fragmentation. Furthermore, minimizing active nodes makes the
system scalable without excessive energy or resource wastage, as only essential
nodes remain active at any given time.

5.4. Time Complexity of DDRL-CAAP

The time complexity of DDRL-CAAP is analyzed using the Big O nota-
tion, and considers the different parts that intervene in the learning process:
experience collection by the actors, model training by the learner, data trans-
fer from actors to the learner and model parameter broadcast from the learner
to the actors. These aspects are discussed below.

• Experience collection by the actors: Each actor interacts with its MEC
system environment, which is composed of Nm nodes. Each of them
involves a constant time operation by step, so the complexity per actor

21

is O(Nm). Thus, the number of actors is the number of MEC systems
in the system model, so the complexity of presenting M actors, each of
them managing Nm nodes, is O(M ·Nm).

• Experience sent to replay memory: The experiences generated by the
actors are stored in the replay buffer, and the complexity of including
the experiences in the replay buffer is O(1). The total insertion for M
actors, based on Nm nodes each, is O(M ·Nm).

• Model training by the learner: If the learner samples B experiences
per update, the complexity for sampling experiences is O(B logNm)).
The neural network update complexity is O(B · P)), where P is the
complexity of a single backpropagation step.

The total time complexity (TTC) of the DDRL-CAAP algorithm depends
on the number of nodesNm and the number of MEC systemsM . By combining
the elements of the training described above, the total complexity is given by
Eq. (15),

TTC = O(M ·Nm +B logNm +B · P) (15)

6. Orchestration Activities

This section describes how the inference model presented in Section 5 is
integrated into a real testbed and the architecture’s endpoints, interfaces, and
workflow for handling application allocation requests needed for the tests. To
this end, it also examines into the features and capabilities of the MEO used,
highlighting the improvements introduced by this work.

6.1. Integration of the Application Placement Model with the MEC Orches-
trator

To distribute and deploy the application placement model, we containerize
the trained DRL model and its dependencies using Docker for a production
environment. This encapsulates the dependencies within the container, elimi-
nating compatibility problems and the need for manual environment setup
on different machines. Encapsulating the DRL model ensures an isolated
environment, preventing the issues related to dependencies and system con-
figurations across different MEC systems. Docker enables easy scalability
and deployment, allowing the model to run reliably in production without

22

interference from the host system. In addition, we introduce a REST API to
communicate with the MEC orchestrator in order to gather the main features
of storage, RAM, and CPU from the nodes, and with the Operation Support
System (OSS) to obtain the application requirements. The OSS is responsible
for regulating the input of applications, specifying the requirements, arrival
rate and duration of the applications coming into the system. After acquiring
this data, the REST API engages with the DRL model to initially seek any
migration directives, if present, followed by determining the placement deci-
sion. Finally, this API returns the node to perform the application placement
output. This setup makes it possible to configure specific tests and triggering
the model when a new application arrives, facilitating performance metric
determination.

The design of the MEO proposed in [40] provides novel endpoints to
seamlessly incorporate intelligence into its functionalities. The MEO plays a
central role, functioning as both a manager and a singular entry point within
the MEC system through a northbound API, enabling functionalities such as
onboarding, deployment, information retrieval regarding existing applications,
application migration, and deletion. After successful integration, the key
operational functionalities of the system DRL and MEO include:

• For incoming requests, the MEO extracts application prerequisites,
retrieves system telemetry via customized node-exporters, and subse-
quently relays this data to the intelligent module.

• Once the model running together with a MEO instance identifies the
optimal node for placement, the orchestrator manages resource and
application allocation, and lifecycle on the basis of the model decision.

6.2. Application Placement Request Workflow

Figure 5 illustrates the sequence of actions initiated when the MEO
receives an instantiation request from the user application through the OSS
via the REST API. Note that the diagram presented in this section depicts the
inference process of the model for application placement, while the diagram
presented previously in Figure 4, Section 5, shows the training process.
Initially, the MEO onboards the descriptor file, generating a unique ID for the
request. Subsequently, the MEO sends a metric retrieval request to the metric
aggregator to obtain telemetry system information for application placement.
Then, the MEO triggers a node selection request to the DRL model, with

23

Figure 5: Application placement request workflow.

this request containing the application requirements together with the system
telemetry. When acquiring this data, the REST API verifies the feasibility of
migrating applications from one node to another, as described in Section 4,

24

to ensure a minimal active node count. Hence, the model synchronizes with
the MEO to acquire the latest availability data from the nodes if migration
occurs. The model employs the underlying system’s status details and the
application’s requirements to select the optimal node that maximizes its
reward function. As a result, the MEO triggers the placement request on the
model’s selected node. This deployment request is forwarded to the MEC
Platform Manager (MECPM), leading to the effective deployment of the
application either on the virtual infrastructure manager at the near or the
far edge.

7. Configuration of Test Scenarios

This section outlines the configuration of test scenarios to evaluate the
application placement approach described in Section 5, and it describes the
methodology employed in training and deployment configuration. The test
scenarios are designed to reflect realistic situations that may arise in a dis-
tributed MEC system configuration. The model is examined in situations
where a MEC system, initially trained with specific types of applications,
must adapt to new requirements at the deployment stage due to application
migration or shifts in user preferences. For instance, incorporating XR appli-
cations to enhance the user navigation experience within the city necessitates
the addition of different functionalities and capabilities, as presented in the
real-world case study described in Section 5.

7.1. Methodology

The methodology for conducting the evaluation is detailed below, and is
based on the architecture introduced in Section 3. The evaluation examines the
performance of the application placement approach when hosting applications
after the model has been trained to see how well it meets different requirements.
The experiments were performed on IoT Fog, IoT Smart, and XR applications,
with the aim of targeting applications as close as possible to a real-world
scenario. At the start of the algorithm, all nodes are in a state of initial
inactivity since no applications exist in the system. To assess the scalability
and compliance with the objectives outlined, the following metrics were
evaluated:

• The model’s accuracy was calculated to ascertain the probability that
the model predicts the action associated with the highest reward value

25

among the available nodes, in order to minimize the number of active
nodes.

• Inference time was recorded, this representing the interval between
the arrival of an application request and the model’s response, which
includes the instantiation at the corresponding node.

• Infrastructure information was examined to monitor node availability
and the application acceptance rate within the system model. This
comprehensive approach provides an overview of the architecture’s
performance and functionality.

• Power consumption was analyzed to determine the extent to which the
proposed method can be used to save power compared with baseline
approaches.

• Scalability was assessed in reference to our algorithm’s performance
across different scenarios. Our evaluation is focused on understanding
how our algorithm adapts and performs under various conditions.

7.1.1. Vertical applications description

The applications selected for testing can be divided into three main
types: IoT Smart City, IoT Fog, and XR. Our methodology presents these
classes to assess the system’s impact when applications present varying entry
rates and requirements, representing different use cases. The corresponding
requirements and application entry rates (λk) of applications are shown in
Table 3. For each class of application, the references for the data obtained
are listed: IoT Smart City [41] (IoT Smart), IoT Fog [41], and XR [42, 43].
Additionally, the applications’ entry follows a Poisson distribution, with a
duration time for an application ranging from Tmin = 150 s to Tmax = 350 s
in simulation scenarios, and following a uniform distribution.

7.1.2. Scenarios description

A series of scenarios were devised for both simulation and a real-world
testbed, in order to assess the scalability of the application placement model
in different system configurations. To achieve this, variations were performed
from one configuration to another, considering the number of nodes, MEC
systems, and different application types. In order to evaluate the influence
of varying computational capabilities on the algorithm’s performance, it is

26

Type Storage RAM CPU λk

(GB) (GB) (vCPU) (apps/s)

IoT Smart [1, 8] {0.5, 0.7, 0.9, [1, 5] 2
1.1, 1.3, 1.5}

IoT Fog [1, 8] [0.5, 2] [1, 4] 1
XR [0.18, 0.55] [0.5, 2] [0.05, 0.42] 0.06

Table 3: Applications’ specifications.

necessary to consider the distinctive characteristics of the MEC systems in
each scenario. The characteristics of the simulation and testbed scenarios are
shown in Table 4, while Table 5 describes the objectives of these scenarios for
the sake of simplicity. Scenarios 1-3 are simulation-based, while Scenarios 4-5
are testbed-based.

The configuration of 4 nodes and 3 MEC systems with IoT Fog applications
in Scenario 3 correlates with Scenario 4. The objective of this study was
to assess inference time, accuracy, and availability in the same configuration
across two distinct environments, testbed and simulation. This methodology
enables the assessment of the impact of a real-world scenario within a simulated
configuration. Scenarios 1-3 were intended to demonstrate the scalability of
the approach, and were only tested in simulation, as they are characterized by
high scalability, which, in turn, necessitates the use of a considerable amount
of hardware equipment.

The duration of the simulation was determined in accordance with the

Scenario No. Applications No. Test Type of
Nodes MECs time (s) test

1 4, 8, 12, IoT Fog 2 550 Simulation
16, 20

2 4 IoT Fog 4, 6, 8 550 Simulation
3 4 IoT Fog, 3 50-550 Simulation

IoT Smart, XR
4 4 IoT Fog 3 50 Testbed
5 4 IoT Smart 3 50 Testbed

Table 4: Simulation and Testbed Scenarios Characteristics.

27

Scenario Description

1 Performance under varying number of nodes
2 Performance under varying number of MEC systems
3 Performance under different entry applications
4 Performance under IoT Fog applications on testbed
5 Performance under IoT Smart applications on testbed

Table 5: Simulation and testbed scenarios description.

entry rate of applications received for each scenario. This approach ensures
comprehensive coverage of key events, including the inflow of different appli-
cation requests, the end of their lifetime, the depletion of system resources,
and instances of application rejection. Specifically, with regard to Scenario 3,
the objective is to demonstrate how the accuracy and system resources vary
over time for different applications. For this purpose, the first data sample
point of time of 50 s was selected, as this represents a point at which appli-
cations have not yet been removed from the system and the system has not
reached its maximum capacity for accommodating new applications. This
is considered an appropriate starting point for demonstrating the trend in
accuracy behavior.

In Scenario 1, we test the model’s performance under varying numbers of
nodes, with 2 MEC systems and 4, 8, 12, 16, and 20 nodes per MEC system.
Scenario 2 tests the influence of a higher number of MEC systems, ranging
from 4 to 8, and considering 4 nodes per MEC system in each case. The
evaluation aims to demonstrate the adaptability of the proposed approach to
different environments and training data, regardless of the locally available
data. For Scenario 1 and Scenario 2, IoT Fog applications are included
during training and inference with a fixed entry rate λF = 1 apps/s in 550 s
of simulation time. The selected simulation time is strategic, as during this
period, a significant number of applications have been deployed and a group
of them have finished. It is also the point at which some applications have
been rejected. Consequently, this timeframe captures the critical events in
the simulation.

Tests in Scenario 3 have the objective of assessing the impact of diverse
applications on the system and the responsiveness of MEC systems over a
550 s simulation period. In this scenario, each of the three deployed MEC

28

systems handled just one of the three applications types, namely IoT Fog
(λF = 1 apps/s), IoT Smart (λS = 2 apps/s), or XR (λXR = 0.06 apps/s),
during the training phase. The DRL model of each MEC system was trained
with a different type of application. By contrast, during the inference phase,
each MEC system receives all types of applications. This approach evaluates
the model’s capability to accommodate unforeseen application types during
the inference stage, types which were not explicitly assumed for a MEC system
during the training. This experimental design facilitates an examination of
the DDRL model’s adaptive functionality. For simulation-based scenarios, the
nodes within each MEC system are fitted with identical computing capabilities,
including storage, RAM, and CPU capacity.

In Scenario 4 and Scenario 5, the evaluation is carried out on a real-world
testbed to determine how system configurations in a real deployment influence
the model’s behavior. Within the MEC system under consideration, each
node possesses distinct initial capabilities regarding storage, CPU, and RAM,
mirroring the typical heterogeneity found in actual MEC systems. With
regards the simulation scenarios, the tests were repeated 100 times, whereas
in the testbed scenarios, they were repeated ten times, including a 95%
confidence interval.

7.2. Simulator Configuration

For the simulation-based scenarios, we employed Simu5G [44, 45], which
is an open-source framework capable of simulating a 5G network. It uses
the OMNET++ simulator as a base and introduces a 5G MEC architecture,
enabling the onboarding of MEC applications. Thus, the simulation tests
were performed on Simu5G with an API REST server on the host machine.
This enables the exchange of information between the simulation environment
and the Python libraries during the simulation and inference stages.

The MEC orchestrator decides whether to instantiate applications on
MEC nodes, and the server serializes the already trained DDRL model and
uses it to provide a response to the simulation environment. On the basis
of this response, the MEC orchestrator in the simulation environment takes
appropriate actions. Although Simu5G supports MEC scenarios with a MEC
orchestrator and nodes, it lacks communication between orchestrators.

Table 6 shows the capacity values for each node per MEC system in simula-
tion. The configurations reflect off-the-shelf edge servers from different vendors.
In particular, the Intel servers were Intel NUC BKNUC9VXQNX1, Intel NUC
9 Pro 9V7QNX, and Intel NUC 11 NUC11PAHi5.

29

7.3. Testbed Configuration

For production deployments, the DRL model and MEO are container-
ized, utilizing the communication interfaces explained in Section 6. Table 7
presents the computational capabilities of each node inside the MEC sys-
tem. To enhance the functionality of the testbed, this work employs minor
computational capacity servers for application placement in relation to the
ones utilized for simulation. This strategic choice ensures a more realistic
representation of resource utilization. Furthermore, to establish a coherent
temporal mapping, we extrapolate the lifespan of applications from the sim-
ulation environment to the testbed setting to prevent servers from running
out of space prematurely. For this purpose, we decrease the duration time
of the applications (Tmin = 10 s and Tmax = 25 s). The simulation time
for this case is set to 50 s; during this time, assessing the aforementioned
critical system events is possible. However, it should be noted that the metrics
aggregator was updated at a frequency of 30 seconds. Consequently, from the
moment an application was hosted, a 30-second interval was observed before
launching the other to allow the metrics aggregator to update correctly and
acquire the infrastructure data. Therefore, this resulted in the duration of
applications and tests having a scaling factor of 30 seconds. A single test,
with λF = 1 apps/s and λS = 2 apps/s, had a duration of 30 minutes and
60 minutes, respectively. Thus, only ten tests were performed on the testbed
due to the longer duration. For clarity and readability, the values in the text

Storage RAM CPU Brand,

MEC (GB) (GB) (vCPU) Model

1 1024 64 128 Intel NUC

2 1024 32 72 PowerEdge R250

3 500 32 32 OptiPlex XE4

4 1024 64 32 PowerEdge T550

5 1024 64 72 Intel NUC 9 Pro

6 500 8 32 Intel NUC 11

7 1024 64 72 Intel NUC 9 Pro

8 500 8 32 Intel NUC 11

Table 6: Computational capabilities of nodes per MEC system (simulation).

30

Storage RAM CPU Brand,

Node (GB) (GB) (vCPU) Model

1 957 64 16 Intel NUC

2 951 64 12 Intel NUC 9 Pro

3 267 32 8 VM in SuperM

4 109 32 8 VM in SuperM

Table 7: Computational capability of each node (testbed).

are presented without considering the 30-second wait.

7.4. Neural Network Configuration

The neural network from the DRL model is composed of an input layer, two
hidden layers, and an output layer, with the input layer having b ·Nm+ |Dr(k)|
features as input data. In other words, the model colocated with each MEO
has several input features proportional to the number of MEC nodes multiplied
by the number of parameters considered (i.e., in this work, RAM, CPU, and
storage availability) and the application requirements under these parameters.
The first and the second hidden layers have η nodes each and use relu as an
activation function, where η = 128. The output layer contains Nm features
and uses the linear activation function. Note that there is a difference between
the number of nodes in a MEC system (Nm) and the number of nodes of a
neural network layer, η.

8. Performance Results

This section presents the results of the algorithm evaluation in different
configuration scenarios. The objective is to draw conclusions about its
performance in simulation and real-world environments. By examining its
behavior under a variety of conditions, we aim to understand the model’s
strengths, limitations, and the trade-offs arising from minimizing the number
of active nodes. The metrics presented in Section 7 are analyzed to evaluate
the inference performance of the proposed approach.

Figure 6a presents the convergence rate for different number of MEC
systems, Figure 6b shows the convergence rate for different number of nodes,
and the training time for these configurations is depicted in Figure 6c. Fig-
ure 7a and Figure 7b illustrate the accuracy obtained for Scenario 1, whereas

31

Figure 7c presents a comparison between the power consumption of DDRL-
CAAP and the baseline algorithms in this scenario. The accuracy results for
Scenario 2 are shown in Figure 8. Additionally, Figure 9, Figure 10, and
Figure 11 show accuracy values for IoT Fog, IoT Smart and XR applications,
respectively, in Scenario 3. The availability and rate of accepted applications
are analyzed in Figure 12. With regards to the scenarios evaluated on the
testbed, Figure 13 illustrates the accuracy for Scenario 4 and Scenario 5.
Furthermore, Figure 14 examines the availability and the rate of accepted
applications. The results are presented in detail and discussed further in this
section.

The convergence rate has been analyzed for different scenarios, reflecting
the accuracy over training episodes, and this allows us to determine the
number of iterations that are required to achieve the global optimum. The
global optimum reference determines the point of the training processes where
the algorithm could be used for deployment in the different scenarios. Fig. 6a
and Fig. 6b presents the convergence rate for different MEC systems and
different number of nodes, respectively. The figures show that as the number
of MEC systems, and consequently the number of actors in the network,
increases, the accuracy reaches its global optimum in fewer iterations.

Figure 6c presents the training time in minutes for a different number of
MEC systems (M) and a different number of nodes per MEC system (Nm).
The time complexity presented in Section 5 indicates the dependence on these
parameters. The curves in this figure reflects that the training time of the
algorithm increases with the number of nodes and MEC systems. However,
training time is found to increase most significantly in direct proportion to the
number of MEC systems. As the number of workers increases, the demand
for computational resources such as CPU, GPU, and memory also rises. The
training system implemented on a single machine experiences contention, as
the multiple worker processes compete for the same resources, potentially
leading to slower processing times. The work in [37] presented the ApeX
approach, achieving an acceptable performance for specific configurations, such
as Atari games, while necessitating the use of a significant number of actors.
However, it is worth studying various distributed deep reinforcement learning
techniques in future research. Such a study would allow a comprehensive
evaluation of training times and the accuracy of these methods, in relation to
the approach presented in this paper.

32

5 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

Number of Iterations (scaled by 10)

0

20

40

60

80

100

Ac
cu

ra
cy

 %

3 MEC Systems, 4 nodes per MEC System
4 MEC Systems, 4 nodes per MEC System
6 MEC Systems, 4 nodes per MEC System
8 MEC Systems, 4 nodes per MEC System

(a) DDRL-CAAP convergence rate for
different number of MEC systems.

5 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

Number of Iterations (scaled by 10)

0

20

40

60

80

100

Ac
cu

ra
cy

 %

2 MEC Systems, 4 nodes per MEC System
2 MEC Systems, 8 nodes per MEC System
2 MEC Systems, 12 nodes per MEC System
2 MEC Systems, 16 nodes per MEC System
2 MEC Systems, 20 nodes per MEC System

(b) DDRL-CAAP convergence rate for
different number of nodes.

5 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

Number of Iterations (Log Scale) (scaled by 10)

0

100

200

300

400

500

600

Cu
m

ul
at

iv
e

Tr
ai

ni
ng

 T
im

e
(m

in
ut

es
)

2 MEC systems, 4 Nodes per MEC system
2 MEC systems, 8 Nodes per MEC system
2 MEC systems, 12 Nodes per MEC system
2 MEC systems, 16 Nodes per MEC system
2 MEC systems, 20 Nodes per MEC system
3 MEC systems, 4 nodes per MEC system
4 MEC systems, 4 nodes per MEC system
6 MEC systems, 4 nodes per MEC system
8 MEC systems, 4 nodes per MEC system

(c) Training time of DDRL-CAAP algorithm.

Figure 6: DDRL-CAAP convergence rate and training time for the different scenarios.

8.1. Scenario 1: Performance with Different Number of Nodes

The results for Scenario 1 regarding the model’s scalability in terms of
different numbers of nodes per MEC system are presented in Figure 7. In
particular, we provide a comparative analysis of the accuracy metrics for
two different MEC systems at the 250 s mark. This timestamp has been
chosen to present the accuracy results because, up to this point, the critical
events of application ingress, egress, and, therefore, application migration
have occurred.

33

4 8 12 16 20
Number of nodes per MEC System

70

80

90

100

Ac
cu

ra
cy

 %

(a) DDRL-CAAP test in
MEC system 1.

4 8 12 16 20
Number of nodes per MEC System

70

80

90

100

Ac
cu

ra
cy

 %
(b) DDRL-CAAP test in
MEC system 2.

0 5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

100

200

300

400

500

600

700

800

Po
we

r c
on

su
m

pt
io

n
(W

at
ts

)

ILP 4
ILP 8
ILP 12
ILP 16
ILP 20

RS 4
RS 8
RS 12
RS 16
RS 20

DDRL 4
DDRL 8
DDRL 12
DDRL 16
DDRL 20

(c) Power consumption com-
pared with benchmark algo-
rithms.

Figure 7: Inference accuracy and power consumption performance for different number of
nodes (Scenario 1).

During training, the model was incorporated into an architecture with two
MEC systems, and we demonstrated its performance in both MEC systems
separately during inference. As can be seen, the accuracy is not significantly
affected by the increase in the number of nodes. The model supports 20
nodes while maintaining an average accuracy above 98.1% across all cases.
In certain configurations, it can achieve up to 99.1% accuracy. Figure 7a and
Figure 7b indicate that the model performs similarly in both MEC systems.

Additionally, the power consumption for all nodes is measured across a
simulation time of 550 s and compared with random selection (RS) and the
iterative ILP (One-Step-CAAP) algorithms in Figure 7c. To facilitate a finer
appreciation of the graphs in this figure and in the Scenario 3 graphs, the
x-axis has been scaled by a factor of 10.

The Random Selection algorithm randomly selects between the nodes that
satisfy the constraints described in Section 4. The DDRL-CAAP algorithm
outlines the anticipated behaviour of the MEC orchestrator in the absence
of an integrated application placement algorithm. Power consumption in
relation to CPU is selected as a baseline to determine the relation between
CPU and power consumption from the Scaphandre metrics as per the model in
work [7]. We aim to demonstrate how our proposed DDRL-CAAP algorithm
can reduce the nodes’ overall power consumption compared with existing
baseline methods during simulation time. In this case, the ILP algorithm
outperforms the DDRL approach with a mean consumption reduction of
2.41%. The DDRL approach, in turn, outperforms the Random Selection
algorithm with an average consumption reduction of 4.35%.

34

It can be stated that, for 4 nodes, the algorithms do not differ with regards
to power consumption, except for the case of 200 s. During this simulation
time, the ILP approach outperforms DDRL. The observed performance with
4 nodes is consistent across different algorithms when the CPU consumption
reaches 70% of total capacity or higher. At these levels of utilization, the nodes
are rapidly approaching their maximum capacity, resulting in a similar overall
power consumption regardless of the algorithm employed. After approximately
200 s, the system reaches its saturation point, and power consumption levels
off as a result.

From the eight-node configuration upwards, there is a clear difference
between ILP and DDRL regarding Random Selection. The Random Selection
algorithm increases power consumption by randomly selecting nodes, which
leads to a higher probability of activating more nodes. In contrast, the DDRL
algorithm effectively minimizes the number of active nodes, thereby reducing
overall power consumption.

8.2. Scenario 2: Performance with Different Number of MEC systems

Conversely, Figure 8 shows the scalability regarding the number of MEC
systems for training, corresponding to Scenario 2. The experiments were
conducted using varying numbers of MEC systems, ranging from 4 to 8, and
considered the inference results for each training configuration. This test
was performed using IoT Fog applications, with a training configuration of 4
nodes per MEC system and a 550 s simulation time. The accuracy results are
presented at the 250 s mark, as in the previous scenario. Figure 8a depicts the
results for M = 4, achieving an average accuracy of over 96.1% in all cases.
The analysis of 6 MEC systems (Figure 8b) yielded an accuracy above 95.7%,
and in the case of M = 8 (Figure 8c) the accuracy results reached 96.9%.
Nonetheless, the lower whisker limits increase from 4 to 8 MEC systems,
indicating a higher data dispersion. As the number of MEC systems increases,
so does the ability of the actors in the DDRL model to synchronize their
actions, and the sharing of model weights reduces the variance.

8.3. Scenario 3: Performance with Different Applications

The test in Scenario 3 aims to demonstrate the model’s performance when
encountering different applications during inference. Three MEC systems
were provided with data related to IoT Fog, IoT Smart, and XR applications
during training.

35

1 2 3 4
MEC System ID

70

80

90

100

Ac
cu

ra
cy

 %

(a) Test with 4 MEC systems.

1 2 3 4 5 6
MEC System ID

70

80

90

100

Ac
cu

ra
cy

 %
(b) Test with 6 MEC systems.

1 2 3 4 5 6 7 8
MEC System ID

70

80

90

100

Ac
cu

ra
cy

 %

(c) Test with 8 MEC systems.

Figure 8: DDRL-CAAP inference accuracy for different number of MEC systems, 4 nodes
per MEC system (Scenario 2).

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %

(a) Test in MEC system 1.

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %

(b) Test in MEC system 2.

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %

(c) Test in MEC system 3.

Figure 9: DDRL-CAAP inference accuracy for different MEC systems, 4 nodes per MEC
system with IoT Fog (Scenario 3).

A comparison between Figure 9 and Figure 10 reveals that as IoT Smart
applications exhibit a faster entry rate, compared with IoT Fog, the infras-
tructure saturates earlier. For the case of Figure 11, as applications enter
the system with a low arrival rate, the applications are maintained with an
acceptable accuracy performance during the simulation phases. Consequently,
the accuracy results for IoT Smart applications declines more rapidly than
for IoT Fog applications. This observation underscores the model’s accept-
able performance under a high volume of applications. For these tests, it
can be noticed that the values remain relatively stable at a certain point in
the simulation because the system starts to saturate. New applications are
incorporated onto the available resources left by those that have exited the
system, and the model operates accurately.

In addition to analyzing the accuracy of each simulated scenario, this
work examines the behavior of system resource availability as applications

36

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %

(a) Test in MEC system 1.

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %
(b) Test in MEC system 2.

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %

(c) Test in MEC system 3.

Figure 10: DDRL-CAAP inference accuracy for different MEC systems, 4 nodes per MEC
system with IoT Smart (Scenario 3).

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %

(a) Test in MEC system 1.

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %

(b) Test in MEC system 2.

5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

70

80

90

100

Ac
cu

ra
cy

 %

(c) Test in MEC system 3.

Figure 11: DDRL-CAAP inference accuracy for different MEC systems, 4 nodes per MEC
system with XR (Scenario 3).

are introduced into the system. In this regard, Figure 12a presents the
infrastructure resource availability over the whole simulation time of MEC
system 1 for IoT Fog and IoT Smart applications regarding storage, CPU, and
RAM metrics, corresponding to Scenario 3. The availability ends in the case
of IoT Smart applications because CPU capacity is exhausted before RAM
and storage when the simulation time reaches 100 s. However, in the case
of IoT Fog, both RAM and CPU reach the minimum almost simultaneously
after 200 s. These results align with the accepted application rate shown in
Figure 12b. IoT Smart applications start being rejected by the system after
100 s, while IoT Fog applications start after 200 s, confirming the results
shown in Figure 9 and Figure 10.

37

0 5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

0

20

40

60

80

100

M
ea

n
m

et
ric

 a
va

ila
bi

lit
y

%

Storage IoT Fog
RAM IoT Fog
CPU IoT Fog
Storage IoT Smart
RAM IoT Smart
CPU IoT Smart

(a) Availability of nodes in MEC system 1.

0 5 10 15 20 25 30 35 40 45 50 55
Simulation time (s, scaled by 10)

0

20

40

60

80

100

Ra
te

 o
f a

cc
ep

te
d

ap
ps

 (%
)

MEC 1 IoT Smart
MEC 2 IoT Smart
MEC 3 IoT Smart
MEC 1 IoT Fog
MEC 2 IoT Fog
MEC 3 IoT Fog

(b) Rate of applications accepted for place-
ment.

Figure 12: Inference-availability of nodes and rate of applications accepted for placement
(Scenario 3).

0 5 10 15 20 25 30 35 40 45
Simulation time (s)

0

20

40

60

80

100

Ac
cu

ra
cy

 %

(a) IoT Fog applications (Scenario 4).

0 5 10 15 20 25 30 35 40 45
Simulation time (s)

0

20

40

60

80

100

Ac
cu

ra
cy

 %

(b) IoT Smart applications (Scenario 5).

Figure 13: Inference accuracy for IoT Fog and Smart applications (Scenario 4 and Scenario
5), respectively.

8.4. Scenario 4 and Scenario 5: Performance for IoT Fog and IoT Smart
Applications (Testbed)

As we show in Table 4, to experiment with the model in a real-world
environment, we consider two testbed scenarios, namely Scenario 4 and
Scenario 5. Each one has the same configuration, but they are differentiated
by the types of applications: Scenario 4 considers IoT Fog applications, while

38

0 5 10 15 20 25 30 35 40 45
Simulation time (s)

20

40

60

80

100

M
ea

n
m

et
ric

 a
va

ila
bi

lit
y

%

Storage IoT Fog
RAM IoT Fog
CPU IoT Fog
Storage IoT Smart
RAM IoT Smart
CPU IoT Smart

(a) Availability of nodes.

0 5 10 15 20 25 30 35 40 45
Simulation time (s)

0

20

40

60

80

100

Ra
te

 o
f a

cc
ep

te
d

ap
ps

 (%
)

IoT Fog
IoT Smart

(b) Rate of applications accepted for place-
ment.

Figure 14: DDRL-CAAP inference-availability of nodes and rate of applications accepted
for placement (Scenario 4 and Scenario 5).

Scenario 5 IoT Smart applications.
For these two scenarios, we evaluate the accuracy results in Figure 13a

and Figure 13b. The tests for Scenario 4 and Scenario 5 demonstrate an
underperformance compared with the simulation. The model follows an equal
tendency to that in simulation, and when the simulation time of applications
corresponds to the time when the system is almost full of applications,
the model’s performance starts to decrease. According to Figure 14b, the
applications start to be rejected in the MEC system at 10 s for IoT Smart
applications and, in the case of IoT Fog, at 20 s.

The above behavior is corroborated by the availability curve shown in
Figure 14a, which demonstrates that in the context of IoT Smart and IoT
Fog applications, the nodes reach full occupancy at 10 s and 20 s, respectively.
These graphs show a trend that is similar to that in Scenario 3, but with
lower accuracy due to reduced capacity and quicker saturation. When a node
is almost reaching its total capacity, the model could choose another available
node to perform the placement. As a result, in cases where a new application
could have been accommodated on the previous node with available resources
but is instead placed on the next node, it is considered a case with an accuracy
equal to zero. The ApeX algorithm, based on priority distribution, does not
typically interpret this situation as a priority, leading to a degradation when
this event occurs.

39

No. Apps No. Inf. CI Inf.
Nodes MECs Time Inf. Time Time ILP

1

4 IoT Fog 2 0.442 (0.435, 0.450) 14.306
8 IoT Fog 2 0.435 (0.426, 0.443) 22.925
12 IoT Fog 2 0.461 (0.453, 0,467) 25.602
16 IoT Fog 2 0.426 (0.419, 0.432) 30.062
20 IoT Fog 2 0.440 (0.435, 0.445) 31.260

2
4 IoT Fog 4 0.323 (0.316, 0.330) 23.206
4 IoT Fog 6 0.443 (0.436, 0.451) 27.170
4 IoT Fog 8 0.342 (0.332, 0.352) 31.010

3

4 IoT Fog 3 0.333 (0.322, 0.344) 21.545
4 IoT Fog 3 0.378 (0.367, 0.390) 21.350
4 IoT Fog 3 0.368 (0.355, 0.380) 22.109
4 IoT Smart 3 0.323 (0.315, 0.331) 22.293
4 IoT Smart 3 0.299 (0.289, 0.310) 22.321
4 IoT Smart 3 0.333 (0.324, 0.343) 21.837
4 XR 3 0.349 (0.339, 0.360) 20.292
4 XR 3 0.333 (0.326, 0.340) 20.229
4 XR 3 0.368 (0.360, 0.377) 20.223

4 4 IoT Fog 3 0.630 (0.573, 0.688) -
5 4 IoT Smart 3 0.672 (0.603, 0.728) -

Table 8: DDRL-CAAP inference time and ILP computation time (ms) for different scenarios
(average and confidence interval).

8.5. General Performance Discussions

Table 8 presents the results obtained for inference time for the different
scenarios described. The mean and confidence interval (CI) of 100 tests were
calculated for each application’s arrival rate to determine the inference time
for each scenario. The same approach was used for the testbed scenarios, with
ten tests conducted for each scenario. The evaluation of the performance of
the iterative ILP (One-Step-CAAP) reflects that the accuracy is always 100%.
However, the average computing time to place one application is significantly
higher, as shown in Table 9 compared with Table 8, for all the simulated
scenarios presented in Table 4. The average inference time reduction of DDRL
over ILP is 98.3%. Given the extended inference time required for completion
as evidenced in the simulation, ILP tests were not conducted on the real-world

40

Conf. Inf. CI Conf. Inf. CI
Time Inf. Time Time Inf. Time

No. Scenario 1 Apps Scenario 3
Nodes

4 14.306 (14.285, 14.328) IoT Fog 21.545 (21.516, 21.573)
8 22.925 (22.897, 22.954) IoT Fog 21.350 (21.323, 21.376)
12 25.602 (25.573, 25.631) IoT Fog 22.109 (22.080, 22.138)
16 30.062 (30.033, 30.090) IoT Smart 22.293 (22.265, 22.322)
20 31.260 (31.227, 31.293) IoT Smart 22.321 (22.293, 22.349)
No. Scenario 2 IoT Smart 21.837 (21.809, 21.864)

MECs XR 20.292 (20.275, 20.309)
4 23.206 (23.182, 23.229) XR 20.229 (20.215, 20.243)
6 27.170 (27.138, 27.200) XR 20.223 (20.210, 20.236)
8 31.010 (30.980, 31.041)

Table 9: ILP computation time (ms) (average and confidence interval) for the same scenarios
as in Table 8.

Note: Conf: Configuration of the scenarios, please refer to Table 8 for the remaining configuration parameters of each
scenario.

testbed of Scenario 4 and Scenario 5.
In the simulation scenarios, the time data is very similar across all the MEC

systems and even between the different types of applications. Nevertheless,
in the context of testbed configurations, a slight increase in inference time is
discernible compared with the scenarios in the simulation. The involvement
of all components from the moment the request enters the system until the
decision node places the application, results in an increase in inference time
that is higher than those observed in simulated scenarios. Nevertheless, despite
the increase in inference time, the values remain within an acceptable range
in order for the model to be deployed in a real-world production environment.

9. Conclusions

We have proposed a MEC application placement approach considering
vertical applications with random lifecycle time in distributed MEC system
environments. The main goal was to minimize the number of active nodes
and maximize the model’s accuracy. To solve the application placement
problem, we proposed Integer Linear Programming and a distributed deep

41

reinforcement learning algorithm, and the approaches were tested in a sim-
ulation environment. We containerized the model as this provides better
performance and less inference time to work in a real environment considering
scenarios with 4 nodes. The results demonstrated the model’s adaptability to
environments with varying initial resource availability on the nodes, different
number of nodes and MEC systems, achieving highly accurate application
placement. The DDRL-CAAP algorithm improves power consumption in
comparison with the Random Selection algorithm by an average of 4.35%.
By analyzing the power consumption results and using the Random Selection
as a baseline, the value obtained represents how much energy consumption
is reduced in average when using DDRL-CAAP algorithm. Furthermore,
considering the ILP algorithm as a baseline, the DDRL-CAAP algorithm
presents an average reduction in inference time of 98.3%. Future research will
explore the influence on the algorithm of volatile infrastructures, taking into
account MEC node disconnection during training and inference.

Acknowledgements

This work has been performed in the framework of the European Union’s
H2020 project AI@EDGE, co-funded by the EU under grant agreement No
101015922. The authors would like to acknowledge CERCA Programme/ Gen-
eralitat de Catalunya for sponsoring part of this work. This work has also been
supported by the EU “NextGenerationEU/PRTR”, MCIN, by AEI (Spain) un-
der project IJC2020-043058-I, by MCIN/AEI/10.13039/501100011033 (FEDER
“a way of making Europe”) under grant PID2022-142332OA-I00, and by the
Spanish Ministry of Economic Affairs and Digital Transformation and the
European Union – NextGeneration EU, in the framework of the Recov-
ery Plan, Transformation and Resilience (PRTR) (Call UNICO I+D 5G
2021, ref. number TSI-063000-2021-9-6GSMART-ICC). This work was also
supported by the grant ONOFRE-3 PID2020-112675RB-C43, funded by
MCIN/AEI/10.13039/501100011033.

References

[1] ETSI, MEC federation: deployment considerations, White Paper ETSI
White Paper No. 49, European Telecommunications Standards Institute
(Jun. 2022).

42

[2] B. Mao, F. Tang, Y. Kawamoto, N. Kato, AI Models for Green Commu-
nications Towards 6G, IEEE Commun. Surv. Tut. 24 (1) (2022) 210–247.

[3] A. Sufyan, K. B. Khan, O. A. Khashan, T. Mir, U. Mir, From 5G
to beyond 5G: A comprehensive survey of wireless network evolution,
challenges, and promising technologies, Electronics 12 (10) (2023) 2200.

[4] Y. Shi, Y. Yang, C. Yi, B. Chen, J. Cai, Toward online reliability-
enhanced microservice deployment with layer sharing in edge computing,
IEEE Internet of Things Journal 11 (13) (2024) 23370–23383.

[5] C. Ying, Z. Zhao, C. Yi, Y. Shi, J. Cai, An AoTI-driven joint sampling
frequency and access selection optimization for industrial wireless sensor
networks, IEEE Transactions on Vehicular Technology 72 (9) (2023)
12311–12325.

[6] Y. Shi, C. Yi, R. Wang, Q. Wu, B. Chen, J. Cai, Service migration or task
rerouting: A two-timescale online resource optimization for MEC, IEEE
Transactions on Wireless Communications 23 (2) (2024) 1503–1519.

[7] C. Centofanti, J. Santos, V. Gudepu, K. Kondepu, Impact of power
consumption in containerized clouds: A comprehensive analysis of open-
source power measurement tools, Comput. Netw. 245 (2024) 110371.

[8] S. Radhika, P. Rangarajan, Fuzzy based sleep scheduling algorithm with
machine learning techniques to enhance energy efficiency in wireless
sensor networks, Wireless Pers Commun 118 (4) 3025–3044.

[9] D. Tchuani Tchakonté, E. Simeu, M. Tchuente, Lifetime optimization of
wireless sensor networks with sleep mode energy consumption of sensor
nodes, Wireless Netw 26 (1) (2020) 91–100.

[10] S. Tang, B.-S. Lee, B. He, Towards economic fairness for big data process-
ing in pay-as-you-go cloud computing, in: 2014 IEEE 6th International
Conference on Cloud Computing Technology and Science, 2024, pp.
638–643.

[11] H. Badri, T. Bahreini, D. Grosu, K. Yang, Energy-aware application
placement in mobile edge computing: A stochastic optimization approach,
IEEE Trans. Parall. Distr. 31 (4) (2020) 909–922.

43

[12] G. Perin, M. Berno, T. Erseghe, M. Rossi, Towards sustainable edge
computing through renewable energy resources and online, distributed
and predictive scheduling, IEEE Trans. Netw. Serv. Manag. 19 (1) (2022)
306–321.

[13] G. Premsankar, B. Ghaddar, Energy-efficient service placement for
latency-sensitive applications in edge computing, IEEE Internet things
9 (18) (2022) 17926–17937.

[14] C. Torres-Pérez, E. Coronado, C. Cervelló-Pastor, , M. S. Siddiqui,
Distributed learning for application placement at the edge minimizing
active nodes, in: Proc. of 6GNet, Paris, France, 2023, pp. 1–4.

[15] ETSI, Multi-access Edge Computing (MEC); Framework and Reference
Architecture, Group Specification (GS) MEC 003, European Telecom-
munications Standards Institute, version 3.2.1 (Apr. 2024).

[16] R. Aghazadeh, A. Shahidinejad, M. Ghobaei-Arani, Proactive content
caching in edge computing environment: A review, Software: Practice
and Experience 53 (3) (2023) 811–855.

[17] M. Ghorbian, M. Ghobaei-Arani, L. Esmaeili, A survey on the scheduling
mechanisms in serverless computing: a taxonomy, challenges, and trends,
Cluster Computing 27 (5) (2024) 5571–5610.

[18] M. Tari, M. Ghobaei-Arani, J. Pouramini, M. Ghorbian, Auto-scaling
mechanisms in serverless computing: A comprehensive review, Computer
Science Review 53 (2024) 100650.

[19] R. Mahmud, S. N. Srirama, K. Ramamohanarao, R. Buyya, Quality
of experience (QoE)-aware placement of applications in fog computing
environments, J. Parallel Distr. Com. 132 (2019) 190–203.

[20] E. Badidi, Qos-aware placement of tasks on a fog cluster in an edge
computing environment, J. Ubiquitous Syst. Pervasive Netw. 13 (1)
(2020) 11–19.

[21] K. Kaur, F. Guillemin, V. Q. Rodriguez, F. Sailhan, Latency and network
aware placement for cloud-native 5G/6G services, in: Proc. of IEEE
CCNC, Las Vegas, USA, 2022, pp. 114–119.

44

[22] M. Salimian, M. Ghobaei-Arani, A. Shahidinejad, An evolutionary multi-
objective optimization technique to deploy the IoT services in fog-enabled
networks: An autonomous approach, Applied Artificial Intelligence 36 (1)
(2022) 2008149.

[23] C. Yi, S. Huang, J. Cai, An incentive mechanism integrating joint power,
channel and link management for social-aware D2D content sharing and
proactive caching, IEEE Transactions on Mobile Computing 17 (4) (2018)
789–802.

[24] C. Yi, S. Huang, J. Cai, Joint resource allocation for device-to-device
communication assisted fog computing, IEEE Transactions on Mobile
Computing 20 (3) (2021) 1076–1091.

[25] Y. Yang, Y. Shi, C. Yi, J. Cai, J. Kang, D. Niyato, X. Shen, Dynamic
human digital twin deployment at the edge for task execution: A two-
timescale accuracy-aware online optimization, IEEE Transactions on
Mobile Computing (12) 1–16.

[26] H. Sami, H. Otrok, J. Bentahar, A. Mourad, AI-based resource provi-
sioning of IoE services in 6G: A deep reinforcement learning approach,
IEEE Trans. Netw. Serv. Man. 18 (3) (2021) 3527–3540.

[27] J. S. Camargo, E. Coronado, C. Torres-Pérez, J. Palomares, M. S.
Siddiqui, DQN-based intelligent application placement with delay-priority
in multi MEC systems, in: Proc. of EuCNC/6G Summit, Gothenburg,
Sweden, 2023, pp. 460–465.

[28] M. Goudarzi, M. Palaniswami, R. Buyya, A distributed deep reinforce-
ment learning technique for application placement in edge and fog com-
puting environments, IEEE T. Mobile Comput. 22 (5) (2023) 2491–2505.

[29] D. Wei, J. Ma, L. Luo, Y. Wang, L. He, X. Li, Computation offloading
over multi-UAV MEC network: A distributed deep reinforcement learning
approach, Computer Networks 199 (2021) 108439.

[30] B. Hu, Z. Cao, M. Zhou, Scheduling real-time parallel applications in
cloud to minimize energy consumption, IEEE Trans. Cloud Comput.
10 (1) (2022) 662–674.

45

[31] F. Jazayeri, A. Shahidinejad, M. Ghobaei-Arani, A latency-aware and
energy-efficient computation offloading in mobile fog computing: a hidden
markov model-based approach, The Journal of Supercomputing 77 (5)
(2021) 4887–4916.

[32] A. Shahidinejad, F. Farahbakhsh, M. Ghobaei-Arani, M. H. Malik,
T. Anwar, Context-aware multi-user offloading in mobile edge computing:
a federated learning-based approach, Journal of Grid Computing 19 (2)
(2021) 18.

[33] C. Centofanti, W. Tiberti, A. Marotta, F. Graziosi, D. Cassioli, Taming
latency at the edge: A user-aware service placement approach, Computer
Networks 247 (2024) 110444.

[34] J. Santos, C. Wang, T. Wauters, F. De Turck, Diktyo: Network-aware
scheduling in container-based clouds, IEEE Trans. on Netw. and Serv.
Manag. 20 (4) (2023) 4461–4477.

[35] ETSI, Multi-access Edge Computing (MEC); Federation enablement
APIs, Group Specification (GS) MEC 040, European Telecommunications
Standards Institute, version 3.2.1 (Mar. 2024).

[36] Y. Li, Deep reinforcement learning: An overview, arxiv preprint
arXiv:1701.07274 (Nov. 2018).

[37] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, D. Silver, Distributed prioritized experience replay, arxiv preprint
arXiv:1803.00933 (Mar. 2018).

[38] M. R. Samsami, H. Alimadad, Distributed deep reinforcement learning:
An overview, arxiv preprint arXiv:2011.11012 (Nov. 2020).

[39] R. Chen, C. Yi, K. Zhu, B. Chen, J. Cai, M. Guizani, A three-party
hierarchical game for physical layer security aware wireless communica-
tions with dynamic trilateral coalitions, IEEE Transactions on Wireless
Communications 23 (5) (2024) 4815–4829.

[40] AI@EDGE, D2.3 consolidated system architecture, interfaces specifica-
tions, and techno-economic analysis, accessed Aug 2024 (2023).
URL https://shorturl.at/0KKmf

46

[41] A. S. Ibrahim, K. Y. Youssef, H. Kamel, M. Abouelatta, Traffic modelling
of smart city internet of things architecture, IET Commun. 14 (8) (2020)
1275–1284.

[42] R. Fantacci, B. Picano, Edge-based virtual reality over 6G terahertz
channels, IEEE Network 35 (5) (2021) 28–33.

[43] T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos, K. Tserpes,
P. Dazzi, A. I. Protopsaltis, R. Li, Toward supporting XR services:
Architecture and enablers, IEEE Internet Things 10 (4) (2023) 3567–
3586.

[44] G. Nardini, D. Sabella, G. Stea, P. Thakkar, A. Virdis,
Simu5G–an OMNeT++ library for end-to-end performance eval-
uation of 5G networks, IEEE Access 8 (2020) 181176–181191.
doi:10.1109/ACCESS.2020.3028550.

[45] A. Noferi, G. Nardini, G. Stea, A. Virdis, Deployment and configuration
of MEC apps with simu5G, arxiv preprint arXiv:2109.12048 (Sep. 2021).

47

