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Abstract—The complexity of wireless and mobile networks is
growing at an unprecedented pace. This trend is proving current
network control and management techniques based on analytical
models and simulations to be impractical, especially if combined
with the data deluge expected from future applications such
as Augmented Reality. This is particularly true for Software-
Defined Wireless Local Area Networks (SD-WLANs). It is our
belief that to battle with this growing complexity, future SD-
WLANs must follow an Artificial Intelligence-native approach.
In this article we introduce aiOS, which is an AI-based platform
that builds towards the autonomous management of SD-WLANs.
Our proposal is aligned with the most recent trends in in-network
AI promoted by the Telecommunication Standardization Sector
(ITU-T) and with the architecture for disaggregated radio access
networks promoted by the Open Radio Access Network (O-
RAN) Alliance. We validate aiOS in a practical use case, namely
frame size optimization in SD-WLANs, and we consider the long-
term evolution, challenges, and scenarios for AI-assisted network
automation in the wireless and mobile networking domain.

Index Terms—ML, AI, SDN, WLANs, IEEE 802.11, frame
length selection, disaggregated access networks, O-RAN

I. INTRODUCTION

Network softwarization refers to the decoupling of the
software implementing a network function from the hardware
running it. The arguments in favour of network softwarization
are manifold. First, it reduces the deployment cycles for new
network functions. Second, by standardizing the underlying
hardware and accessing it using well-defined abstractions,
network control and management are made easier. Third, the
physical network becomes an open arena for innovation, which
leads to advances in the existing services and the creation of
new ones. Software-Defined Networking (SDN) [1] is a key
enabler in network softwarization.

SDN is essential for the control and management of wireless
networks and, in particular, for Wireless LANs (WLANs),
which today constitute the most popular form of wireless ac-
cess connectivity due to their performance and low deployment
cost. In fact, a four-fold increase in the number of hotspots is
foreseen by 2023, resulting in a total of 628 million public
hotspots. In addition, the average Wi-Fi speed will exceed
91.6 Mbps by 2023 [2]. Therefore, it is crucial to maxi-
mize resource utilization and efficiency in Software-Defined
WLANs (SD-WLANs), thus ensuring that future applications
and services can be efficiently consumed by mobile users.

The literature on SD-WLANs is ample, and is excellently
reviewed in [3]. Nevertheless, the promise of SDN to deliver a
more manageable network, whose behavior could be specified

through high-level applications running on top of a logically-
centralized controller, led to the proliferation of complex
approaches to solve highly specific problems, and to the
creation of a multitude of network configurations. Although
the global network view at the SDN controller enables data-
driven network management based on Artificial Intelligence
(AI) and Machine Learning (ML) approaches [4], it remains
an open question how these solutions should be integrated into
the existing networks without increasing their complexity.

By learning from the success of the Internet obtained
through layering and standardized interfaces, we argue that
the design of the next-generation AI-enabled SD-WLANs
should follow a similar path, namely high-level abstractions,
unified data-models, and well-defined interfaces. This trend
is also promoted by the Telecommunication Standardization
Sector (ITU-T) [5] and the Open Radio Access Network (O-
RAN) Alliance [6]. In this work, we introduce aiOS, the first
open-source O-RAN near-real-time RAN Intelligent Controller
(RIC)1. We extend our previous work [7] as follows:

• First, we provide an overview of the state of the art of
ML-based network management schemes for WLANs.

• Second, we describe the challenges, requirements, and
architecture of the aiOS network automation platform.

• Third, by focusing on a practical use case, namely frame
aggregation in SD-WLANs, we show how aiOS improves
network goodput by up to 55%.

• Fourth, we discuss the future challenges and applications
for automation in wireless and mobile networks.

II. ARTIFICIAL INTELLIGENCE IN SOFTWARE-DEFINED
WIRELESS NETWORKS

By reinterpreting the concept of control and user plane
separation and by introducing a logically-centralized controller
and the associated control applications, SDN played a key
role in taming the complexity of current networks. However,
full control and user plane separation in SD-WLANs is not
trivial. This is because in SD-WLANs it is essential to
draw a line between network control, which deals with fast
timescale operations that cannot be offloaded to the logically-
centralized controller, and network management, which deals
with monitoring and reconfiguration operations. In this section
we first introduce the concept of AI for networks (including
the standardization aspects). Then, we discuss the challenges

1aiOS is released under APACHE 2.0 License at: http://5g-
empower.github.io/
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it raises and describe a few deployment scenarios in which an
AI-empowered SD-WLAN could provide benefits.

A. AI for Networks

With the success of AI in many domains, e.g., computer
vision, the idea of an intelligent network that can observe its
environment and adapt accordingly is gaining momentum. The
broad consensus is that future wireless and mobile networks
will need an increased level of intelligence. Nevertheless, it
is still hard to see shared goals and methodologies when it
comes to integrating AI/ML solutions into production net-
works. A key challenge is the availability of unified frame-
works supporting the various steps in an ML pipeline, namely
data collection, filtering, analysis, and decision making [8].
Moreover, interfaces between the data sources and the ML
models as well as between the ML models and the sink
nodes, must be standardized for the faster deployment of new
solutions. Prior works [4] have reported various successful
approaches involving the use of ML techniques to address
different networking challenges, including resource scheduling
at the MAC layer, mobility management at the network layer,
and precise location at the application layer. Finally, there are
plenty of examples highlighting the role that AI and ML will
play in beyond 5G networks, including 6G [9].

B. Standardization

A recent proposal by ITU-T [5] aims to define a framework
meeting several requirements for integrating ML functions in
wireless networks. These requirements are: (i) support for mul-
tiple data sources and communication networks, (ii) distributed
ML functionalities at various network levels, (iii) flexible
deployment of ML functionalities depending on the require-
ments and the available network resources, (iv) flexibility to
change the data sources and sinks of the ML applications, and
(v) standard syntax to define ML applications.

ITU-T’s proposal is technology-agnostic and can be adapted
to Wi-Fi networks. However, no such effort has been ini-
tiated in IEEE and there is no planned amendment aimed
at introducing network automation into the 802.11 family
of standards. Conversely, academia actively looks into the
application of AI/ML to various aspects of (SD-)WLANs.
Due to space constraints, we mention only two particular
works [10], [7]. The first study [10] introduces deep learning
into the low-level Wi-Fi stack, while the second work [7]
focuses on the higher resource management layers, such as
Enhanced Distributed Channel Access (EDCA) optimization,
and mobility management.

C. Challenges

Several challenges must be tackled before ML techniques
can be applied to SD-WLANs. First, collecting a sufficient
volume of training data can take considerable time. Second,
network operations can be negatively affected when the ML-
based solutions are deployed on the production network.
Network simulators can help with coping with these challenges
by generating training data from a wide range of scenarios.

Moreover, analyzing the ML-based solutions on network sim-
ulators helps in assessing their performance and pitfalls prior
to the actual deployment on the production network.

Network simulators differ significantly from the tools that
are typically used in AI communities. There is thus the need
for interfaces and abstractions that hide the complexity of one
domain from the other if in-network AI becomes a reality.
Works aiming at providing well-defined ML libraries for net-
work simulators can already be found. A notable example is
ns3-gym [11], which integrates ns-3 with a widely used toolkit
for reinforcement learning named OpenAI Gym. This allows
the use of the AI functions implemented in OpenAI Gym by
any ns-3 protocol. The authors in [12] go further and discuss
the integration of simulators in ITU-T’s architecture to provide
the data for training and testing ML models.

In this work, we take a fundamental step forward in network
intelligence by presenting aiOS, which is an AI-based platform
for the control and management of SD-WLANs. aiOS embeds
state-of-the-art ML toolboxes to provide a full intelligence
platform, whose design is driven by AI and aims to drive future
AI-powered networking applications and services. Like [11],
the power of aiOS is that the AI/ML tools are hidden be-
hind high-level programming abstractions that allow network
experts to build novel and effective resource control policies
with limited knowledge of the underlying AI/ML machinery.
Nevertheless, a basic understanding on data filtering and the
ML models used is needed.

D. Deployment Scenarios

The range of services that Wi-Fi networks can deliver is
extremely diverse and spans from broadband Internet access to
Industry 4.0. AI-empowered network operations are the key to
unlocking the full potential of SD-WLANs in such scenarios.
In this section, we discuss three use cases (depicted in Fig. 1)
in which aiOS can bring tangible benefits.

1) Residential deployments: A residential Wi-Fi network
typically comprises several APs and various stations consum-
ing delay-sensitive services, e.g., online gaming, and delay-
tolerant services, e.g., web browsing. In this scenario, aiOS
could be deployed at the Internet Service Provider (ISP)’s
premises, managing multiple residential deployments. Hierar-
chical solutions, in which a local aiOS instance runs at the cus-
tomer site while a second-tier instance aggregates information
at the ISP, can also be envisioned. In both cases federated
learning approaches can be used to train the SD-WLAN
control applications across a wide number of deployments.

2) Enterprise deployments: As opposed to residential net-
works, enterprise deployments are typically planned. In this
scenario, we can envision aiOS running at the customer’s
site, adapting the network configuration to the changing
environment. Nevertheless, a second-tier aiOS instance can
still be used as a way to collect (in a privacy preserving
fashion) training data from a more diverse set of scenarios,
thus improving the accuracy of the ML models (privacy and
security aspects need to be carefully considered in this case).

3) Industrial deployments: Industrial Wi-Fi deployments
may consist of cyber-physical systems with numerous sensors,
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Fig. 1. Residential, enterprise, and industrial aiOS deployment scenarios.

controllers, and actuators coexisting with human users [13].
Industrial applications are often time-sensitive and require
ultra-reliability. Moreover, the amount of data exchanged can
vary depending on the application (control system or failure
prediction). While such challenges may seem more suitable for
5G networks, in May 2019 the IEEE 802.11be Extremely High
Throughput Task Group started the work on extending Wi-Fi
into the Time Sensitive Network domain [14]. In this context,
aiOS can be the element on top of which data-driven opti-
mization tasks such as traffic prediction, failure analysis, and
demand-attentive resource management can be implemented.

III. THE aiOS SYSTEM

Early works on SDN attempted to tame network complexity
by putting in the hands of network programmers powerful
abstractions and languages to control SDN networks [15].
Such attempts resulted in solutions that either hid too many
aspects of the network, up to the point of preventing the
implementation of any meaningful task, or exposed too many
low level details to the network programmer. While SDN
instead of introducing new concepts, proposed a different
way of arranging network capabilities, the aim of aiOS is to
provide a coherent, practical, and data-driven AI platform for
SD-WLANs. It is our belief that this approach is pivotal in
enabling reutilization of the best practices in AI within the
networking domain and in leveraging the huge amount of data
that will be generated by applications. While our work focuses
on SD-WLANs, since they are the most popular wireless
access technology, the same principles can also be extended
to 5G networks and beyond.

The aiOS design leverages the ML pipeline concept pro-
posed by ITU-T [5] and the intelligent and disaggregated
RAN principles put forward by O-RAN [6]. In this section,
we review the key challenges, both ML-related and network-
related, limiting the deployment of ML in wireless networks,
and then we discuss the aiOS architecture.

A. ML-related Challenges

1) Dataset availability and labeling (ML-1): The availabil-
ity of datasets is an integral part of the success of ML and,
in particular, of supervised and semi-supervised learning in
SD-WLANs. However, labeled datasets are usually difficult to
obtain for two main reasons: (i) high-quality datasets usually
come from operational networks, and operators can be very
reluctant to share them as they do not wish to provide competi-
tors with valuable insights into their business strategy; and (ii)
significant amounts of time and resources are needed to collect
and label datasets, which are typically collected using field
measurements. Nevertheless, some open datasets are publicly
available and synthetic ones can be generated using network
simulators (prior to validation on a real deployment).

2) Support for heterogeneous data-sources (ML-2): To be
successful, ML-based network management solutions need to
pull data not only from the network stack but also from
the applications and services running on the network so
that the impact of such applications, e.g., tele-medicine, on
network configuration or optimization can be assessed. Future
802.11ax-based WLANs will by themselves be a huge source
of highly distributed monitoring data. Given the expected
number of hotspots in the coming decades, this could easily
outpace the data generated by 5G and beyond networks. It
is also worth mentioning that different data gathering sys-
tems may deal with different constraints in terms of data
time-stamping and retention, which are two key aspects to
consider for training/updating ML models.

3) Support for current and future ML toolboxes (ML-3):
The success of ML in many fields has led to a rich set of
libraries that simplify the application of ML solutions to a
variety of problems. Such libraries also shield programmers
from the complexities of the hardware acceleration tools,
e.g., GPUs or FPGAs. On the downside, due to their suc-
cess, these libraries evolve at a very high pace. Hence, it is
crucial for an AI-based resource management platform for
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SD-WLANs to shelter network experts from the low-level
details of the ML toolkits. Conversely, great care is required in
abstracting the expected outputs, i.e., the knobs of the network
configuration that the ML solutions must turn and tune.

4) Training time (ML-4): Training time refers to the time
needed to build an ML model. This includes offline training
and re-training while new data are gathered. This process can
be slow, especially if the initial training set is big. Moreover,
due to the stochastic nature of the channel, the behavior of
wireless networks is highly volatile, which can cause offline
trained models to fail to generalize when deployed in the field.
One way to address this problem is by using federated learning
to train different models at distributed sites, consolidate them
at a central site, and then redistribute the consolidated model.
Another option is to leverage reinforcement learning which,
instead of retraining, adapts its behavior on the basis of past
decisions following the punishment/reward model.

B. Network-related Challenges

1) Ease of use (N-1): In order for AI-empowered SD-
WLANs to be adopted in a wide range of use cases and
scenarios, popular AI concepts and tools need to become an
integral part of the development pipeline of SDN experts. If we
draw a parallel with the everything-as-a-service concept that
reshaped cloud computing by encapsulating the management
of complex infrastructures behind a service-based model, we
need an ML-as-a-service model providing SDN developers
with easier access to the most relevant ML toolkits for the
problem they need to tackle. Such toolkits should also be
integrated with the current network management workflows
and best practices.

2) Interpretability (N-2): One of the key challenges limit-
ing the inclusion of ML in wireless and mobile networks is the
interpretability of the results. Operators are reluctant to deploy
black-box solutions that make the network even harder to de-
bug. State-of-the-art ML solutions impose a trade-off between
highly accurate but non-interpretable models (suitable for
nonlinear relationships and requiring long computation times)
versus interpretable but not very accurate models (suitable for
linear relationships and more computationally tractable). The
former category comprises approaches such as deep learning,
while the latter covers regression and classification techniques.
A particularly promising solution is random forest (and deriva-
tives), which combines interpretability, fast training, and a
relatively good capability to generalize results [7].

3) Computational complexity (N-3): It refers to the com-
plexity of using a trained model. Some techniques, such as
deep learning, are very demanding in terms of computational
and storage resources, and this can be a challenge in certain
deployments. For example, the expected deluge of Wi-Fi
hotspots and small 5G cells will not be able to use, due to cost
and power consumption requirements, specialized hardware
to run complex ML models. Large macro cell deployments
already have a notable power consumption footprint coupled
with generally larger deployment sites. In such cases, deploy-
ing specialized acceleration units might be a better option.
Moreover, it is reasonable to assume that in time the hardware
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Fig. 2. aiOS reference system architecture based on O-RAN standards.

required to support ML solutions will be embedded in the
FPGAs already used by vendors in their products.

4) Support for multiple radio access technologies (N-4):
Something that is closely related to the heterogeneous data
sources challenge is support for a diverse ecosystem of radio
access technologies. In fact, it is expected that 2G (3G could
be the first technology to be withdrawn), 4G, 5G, Wi-Fi, and
beyond 5G networks will coexist for decades to come. This
requires the AI-based management platform to interface with
highly heterogeneous technologies, each characterized by very
different design choices. If we just consider the MAC layer,
networks use TDMA in 2G, CSMA/CA in Wi-Fi, OFDMA in
4G, and mixed numerology in 5G.

C. ML-based Architecture

The aiOS architecture is based on the open next-generation
RAN envisaged by O-RAN [6], which seeks to extend the con-
trol/user plane decoupling with AI-empowered radio control,
hardware and software openness, and virtualization. With this
in mind, below we describe the main components of aiOS, as
depicted in Fig. 2, and how the challenges discussed in the
previous section are tackled.

1) Multi-RAT protocol stack: This includes various network
elements based on Wi-Fi, 4G and 5G, that are able of distribut-
ing the load across several (possibly disaggregated) nodes.
Challenges addressed: this diversified deployment tackles the
N-4 (support for multiple RATs) and ML-2 (heterogeneous
data sources) challenges, allowing per-user and per-node RAN
telemetry to be pushed to the near-real-time RAN Intelligent
Controller (RIC) through the standard E2 interface.
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2) Near-Real-Time RIC: This implements control functions
in the order of 10ms-1s, and comprises two main elements:

• Applications Layer. This is a software layer comprising
network applications called xApps in O-RAN terminol-
ogy. The xApps control one or several radio management
operations by exchanging data with the infrastructure
devices over the E2 interface. Examples of these applica-
tions are mobility management and frame size selection.

• Core. This embeds the network intelligence and per-user
near-real-time functions. The information flow is divided
into 6 steps. In Step 1, the RAN Manager collects near-
real-time RAN telemetry by capturing the state of the
underlying infrastructure, and storing it in the Radio-
Network Information Base (RNIB). In Step 2, the ML
Core is fed with these new raw data. The Time Series
Manager is the first entry point, and is responsible for
processing the data from the RNIB, and for providing
the ML Core with a merged and clean dataset. This pro-
cessing combines possibly non-synchronized data sources
(e.g., from various APs) and weights historical data and
new data. After that, the ML Core produces a filtered
dataset that can be used offline by any ML framework
to build a model. In Step 3, the ML Core stores the new
model in the ML Models Catalogue, while in Step 4 it
onboards the model in the Applications Catalogue as an
xApp. In Step 5, the xApp is deployed in the Applications
Layer. Finally, in Step 6 the output of the application is
forwarded to the RAN Manager for RAN reconfiguration.
Note that although Steps 1 to 4 correspond to the ML
pipeline, Steps 5 to 6 are identical for the deployment and
reconfiguration of standard and intelligent xApps. This is
highlighted in Fig. 2 by dashed lines.

Challenges addressed: the modular design eliminates the
need to perform the entire ML pipeline on the network
nodes, reduces computational complexity (challenge N-3) and
facilitates the support of future ML toolboxes (challenge
ML-3). Furthermore, it enables ease of use (challenge N-1),
interpretability for networking experts (challenge N-2), and
allows them to rectify the decisions made by ML engines.

3) Orchestration and automation: This builds on cloud
components acting as a single distributed system (from edge to
data centers). This layer is orchestrated by the non-RT RIC and
implements above-1-second functions such as configuration,
inventory and policy management. The standard A1 interface
allows the specification of individual control policies on the
RAN and their conveyance for runtime execution.
Challenges addressed: besides the deployment of network
policies and reconfiguration, this layer allows ML models to
be trained at the edge or in data centers. Consequently, training
time (challenge ML-4) is greatly reduced by leveraging pow-
erful cloud sites. Moreover, clean data from other sources,
e.g., operational networks, can be inserted, enabling dataset
availability (challenge ML-1).

IV. ADAPTIVE FRAME AGGREGATION USING aiOS

In this section we describe an xApp designed to assess the
viability of aiOS in a network management task of practical

relevance, namely data-driven adaptive frame aggregation in
802.11-based SD-WLANs. The xApp has been implemented
and validated on a Wi-Fi testbed.

A. Description

The channel access of 802.11 incurs a high overhead given
its contention-based nature. Fig. 3 depicts an example of this
issue when transmitting three packets, where the overhead
accounts for 60% of the airtime. To overcome this, the standard
incorporates frame aggregation by employing two techniques:
the Aggregated MAC Service Data Unit (A-MSDU) and the
Aggregated MAC Protocol Data Unit (A-MPDU). Fig. 3 shows
the huge chunk of airtime saved by A-MSDU aggregation.
However, both techniques are too rigid as they define a
fixed frame size. Fig. 4 shows how, under different channel
conditions determined by different distances from the AP
and Modulation and Coding Schemes (MCSes), diverse frame
sizes provide the best goodput for each user, which is where
aiOS’s data-driven capabilities prove their worth by adapting
the frame length on a per-user basis.

On the basis of the in-network information made available
by aiOS, we designed offline ML models to adapt the per-
user frame length to maximize network goodput. We took as
reference the Random Forest Regressor (RFR) and M5P ML
models, which were deployed as xApps, as shown in Fig. 2.
To ensure standard compatibility, the frame size was only
adapted in the downlink direction. The deployment considered
a Wi-Fi network comprising 1 AP, N static stations connected
in downlink and M static stations in uplink representing
background traffic. The AP is based on a PCEngines ALIX
2D board mounting an Atheros AR9220 Wi-Fi interface and
running OpenWRT 18.06.04. The AP, which was configured
on channel 36 and free from external interference, had a fixed
location, while the stations were placed randomly. For the
training phase, the aggregated downlink bitrate was 20 Mbps,
and the uplink bitrate was 1 Mbps. The frame size was set to
200B, with a maximum aggregation length of 3839B. From
this dataset, the variables selected for the models’ construction
were the channel utilization, and specific information of the
MCS, e.g., success probability, attempted bytes in the last
100ms and expected throughput in perfect channel conditions.
Please refer to [7] for more details about the training.

B. Performance Evaluation

The evaluation considered two scenarios covering homoge-
neous (Scenario 1) and heterogeneous (Scenario 2) channel
conditions. In Scenario 1, the stations were placed at 20/30 m
from the AP, while in Scenario 2 the distance was 20/50 m.
The evaluation took the basic frame transmission as baseline
and compared the goodput improvement achieved by the
standard A-MSDU aggregation, the M5P model, and the RFR
model for an increasing number of stations in downlink.

Fig. 5 shows that the basic transmission always offers the
lowest performance because of the high overheard induced
by small payloads. As depicted in Fig. 5a, in Scenario 1 the
ML models outperform A-MSDU aggregation due to their
continuous size adaptation to the network status. By contrast,
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the use of a fixed size results in a greater number of errors
in the transmissions. Moreover, the improvement achieved by
the ML models increases with the number of stations due to
their greater efficiency in dealing with channel congestion.
Fig. 5b, which corresponds to Scenario 2, compares the
same mechanisms under heterogeneous channel conditions.
Similarly to the previous scenario, the M5P and RFR models
outperform the standard mechanisms. In this case, the goodput
improvement is comparatively lower for 3 and 4 stations
because multiple stations are using a lower MCS given the
greater distance, thus increasing the channel utilization. In
general, RFR provides the best results as it is more suitable
for problems presenting high variance and high bias such as
those found in wireless networks, in which channel conditions
can greatly vary.

The results demonstrate that the relative goodput improve-
ment with respect to the standard mechanisms is higher in
heterogeneous conditions. Note that although the improvement
is higher in the homogeneous scenario, the heterogeneous
case is much more significant as it more closely resembles
a real-life environment. This fact proves the relevance of AI-
based network management when taking as input real-time
in-network information such as that provided by aiOS.

V. DISCUSSION AND FUTURE CHALLENGES

AI-enabled SDN is a promising paradigm for future wireless
and mobile networks. In this article, we introduce aiOS, which
is an AI-native platform for control and management policies
in SD-WLANs. aiOS, whose design pillars are high-level
abstractions, unified data-models, and well-defined interfaces,
is well suited to serve the needs of different verticals, including
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residential, enterprise, and industrial deployments. In particu-
lar, we have shown how aiOS can be used to dynamically adapt
the frame aggregation length in 802-11-based SD-WLANs.

Currently, aiOS supports only offline and centralized model
construction. However, we are already working on larger
volumes of data collected from multiple sites to extend aiOS
with online and federated learning capabilities. We expect this
to allow aiOS to react more promptly to changes and provide
more accurate decisions in a timely manner, as the models will
be updated constantly with new batches of data.
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