
Distributed Learning for Application Placement at
the Edge Minimizing Active Nodes

Claudia Torres-Pérez∗, Estefanı́a Coronado∗†, Cristina Cervelló-Pastor‡,
Juan Sebastian Camargo∗, and Muhammad Shuaib Siddiqui∗

∗i2CAT Foundation, Barcelona, Spain;
Email: {claudia.torres, estefania.coronado, juan.camargo, shuaib.siddiqui}@i2cat.net

†Universidad de Castilla-La Mancha, Albacete, Spain; Email: estefania.coronado@uclm.es
‡Universitat Politècnica de Catalunya, Castelldefels, Barcelona, Spain; Email: cristina.cervello@upc.edu

Abstract—The main goal of application placement in Multi-
Access Edge Computing (MEC) is to map their requirements to
the infrastructure for desired Service Level Agreement (SLA). In
highly distributed infrastructures in beyond 5G and 6G networks,
meeting this need and minimizing energy use are crucial. Fo-
cusing solely on meeting SLA requirements can lead to resource
fragmentation and reduced energy efficiency, as nodes utilize only
a small portion of their resources. Furthermore, when multiple
orchestrators govern MEC nodes, achieving optimal efficiency
becomes a more complex challenge. This paper addresses the
application placement problem by employing distributed deep
reinforcement learning to efficiently minimize the overall cost of
active MEC nodes in a distributed scenario involving multiple
MEC systems. Our technique reduces the number of active nodes
maintaining an average accuracy of up to 98%, meets SLA
requirements, and is scalable for hosting several MEC nodes.

Index Terms—application placement, edge computing, dis-
tributed learning, 5G, 6G, active nodes

I. INTRODUCTION

Efficient application placement is crucial in Multi-access
Edge Computing (MEC), especially in highly distributed
scenarios. It involves mapping application components and
links onto an infrastructure graph (i.e., computing devices
and physical edges) [1]. The goal is to meet Quality of
Service (QoS) requirements and optimize system resource
utilization. However, focusing solely on QoS can lead to
resource fragmentation as the number of nodes increases.
To reduce costs, an alternative is minimizing active nodes
to effectively lower energy consumption and satisfy resource
demands. The presence of standby nodes in the infrastructure
generates minimal additional expense, leading to decreasing
hardware deployment and maintenance. Furthermore, inactive
nodes can be activated in case of failures to accommodate
the affected workload. In 6G networks, the complexity and
geographical distribution of edge nodes will increase, requiring
multiple MEC orchestrators to efficiently handle requests and
prevent bottlenecks in different regions or domains. Popu-
lation density and application requirements can vary across
areas (e.g., industrial zones vs. city centers). This necessi-
tates designing resource management algorithms specific to
application types or locations, considering the diverse data and
requests of each orchestrator. However, the decisions of such
orchestrators would be far from optimal if applications with

different requirements were to be run in that network area.
The question is: “How can application placement be tackled
in distributed environments while minimizing the number of
active nodes at the edge infrastructure?”.

To reply to this question, in this paper, we propose an
approach for application placement to ensure the availability of
resources based on Distributed Deep Reinforcement Learning
(DDRL), following a reward function given by the infrastruc-
ture telemetry (i.e., storage, RAM, and CPU resources). We
propose a novel approach for MEC applications placement
in highly distributed environments in beyond 5G and 6G
networks, aiming to minimize the number of active edge nodes
while meeting user requirements. We implement the algorithm
using DDRL, in a multiple MEC system scenario fully com-
patible with ETSI MEC reference architecture. We evaluate the
algorithm using the Simu5G network simulator [2] and extend
it to introduce and implement a control federation interface
that enables communication between MEC orchestrators.

II. RELATED WORK

Application placement has been a research topic in the
last few years via several approaches, such as mathematical
optimization and Machine Learning (ML) methods. Following
the former approach, a multi-component application placement
is presented in [3] to minimize the cost of running applications
while the resources are allocated over an area’s distributed
edge servers. Conversely, the authors of [4] address the prob-
lem of Artificial Intelligence Function placement using Mixed-
integer linear programming in a federated learning setting.

Reinforcement Learning (RL) and its variants demonstrate
superior performance in unknown environments over heuristic
methods [5]. Most existing RL works on application placement
focus on centralized approaches, neglecting geographically
distributed edge nodes managed by different orchestrators. For
instance, the work in [6] proposes a centralized, offline multi-
objective RL algorithm for application placement, aiming to
minimize network impact. Goudarzi et al. employ a distributed
learning approach for application placement optimization, con-
sidering Fog/Edge servers [7].

Existing works ignore the complexities of multiple MEC
systems with different orchestrators and lack insights into



Fig. 1. Distributed MEC System architecture considered.

standardization challenges related to the ETSI MEC architec-
ture [8]. In this regard, the authors of [9] focus on service
placement load balancing in ETSI MEC architecture but
without looking at cross-orchestrator communication.

To the best of our knowledge, no prior works address
distributed application placement with different orchestrators
in ETSI MEC-aligned environments, focusing on minimizing
active edge nodes while maintaining application requirements
and domain-specific data locality using DDRL approaches.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Figure 1 presents the system model envisioned in this work,
based on a variation of the ETSI MEC architecture [8] to
account for distributed MEC systems. It consists of a network
orchestrator at the top level, and each MEC system comprises
a MEC Orchestrator responsible for orchestration functions
within the MEC system. The internal ETSI MEC reference
architecture is considered in this work. However, it is omitted
in Fig. 1 for readability purposes.

The network orchestrator receives an application request
and forwards it to a specific MEC system. The application
descriptor contains storage, RAM, and CPU requirements. The
placement requires node availability in all three parameters.
The primary objective is to instantiate applications while min-
imizing node utilization. The MEC Orchestrator, supported by
a DRL model known as a worker or actor, makes management
decisions within MEC nodes. The model’s output represents
the chosen MEC node for application placement. Since the
proposed ML method is designed at the MEC system level,
the training process assumes that the specific MEC system
to which an incoming application request is forwarded has
already been selected at the orchestration level. The interface
communicating the MEC orchestrators is defined by ETSI
in [10]. We include this control interface in our work to allow
the DRL’s parameters to be exchanged across the network.

The mathematical formulation of the application placement
problem considers multiple MEC systems containing several
nodes. Without loss of generality, we bear in mind that each
MEC has the same number of nodes.

Let M denote the number of MEC systems in our network
architecture and N the number of nodes of each one. Each
node n ∈ N of each MEC system m ∈ M has available

resource capacity associated with storage, RAM, and CPU,
Cn,m = (CST

m,n, C
RAM
m,n , CCPU

m,n ). Furthermore, let R be a set
of application requests arriving at the Network Orchestrator.
Each request r ∈ R demands resource capacity related to
storage, RAM, and CPU, Dr = (DST

r , DRAM
r , DCPU

r ).
We define an Integer Linear Program (ILP), called One-

App-CPP, to place applications iteratively by selecting nodes
with sufficient resources following a Poisson process. The
objective is to optimize application placement maximizing
successful allocations. Being z a binary variable to determine
if the current request is placed and xm,n, a binary variable
indicating if the current request is successfully deployed at
node n ∈ N of MEC system m ∈ M, the constraints of the
problem are the following. First, we establish that the capacity
demand of the current request D = (DST , DRAM , DCPU )
cannot exceed the total capacity in terms of storage, RAM,
and CPU of the node n ∈ N of MEC m ∈ M at which it
will be located:

if xm,n = 1 ⇒


DST ≤ CST

m,n

DRAM ≤ CRAM
m,n ∀n ∈ N , m ∈ M

DCPU ≤ CCPU
m,n

(1)
Due to the dependency between x and z, a relationship be-

tween them must be added, having the following implications:

if xm,n = 1 ⇒ z = 1,

if
∑

∀m∈M

∑
∀n∈N

xm,n = 0 ⇒ z = 0. (2)

With all of these considerations, the One-App-CPP model
is the following:

Maximize z

s.t. xm,n ≤ 1 +
Ci

m,n −Di

max(Ci
m,n)

∀m ∈ M, ∀n ∈ N
i ∈ {ST,RAM,CPU}

xm,n ≤ z ∀m ∈ M, ∀n ∈ N

z ≤
∑

∀m∈M

∑
∀n∈N

xm,n

xm,n, z binary ∀m ∈ M, ∀n ∈ N .

Figure 2 illustrates the iterative algorithm using the One-
App-CPP model, triggered for each request arrival. Step 1
initializes the MEC infrastructure’s total capacity. Steps 2
and 3 iterate to determine the placement of each application
request, updating and storing available MEC resources for later
analysis. The iteration concludes with the final arrival.

IV. DISTRIBUTED DEEP REINFORCEMENT LEARNING
MODEL FOR ACTIVE EDGE NODES MINIMIZATION

This section details the DRL model’s role in each MEC
system during training and inference, along with the DDRL
technique used for distributed training. In DDRL training, a
DRL model is placed together with each MEC Orchestrator,



Fig. 2. Iterative Optimization Model for one Episode.

considering local node availability and application require-
ments as inputs for learning. This approach enables weight
consideration across different domains. The application place-
ment problem is described as a Markov Decision Process
(MDP). The decision process is performed in all MEC systems
independently of the remaining ones, employing local data.
DRL is used to find the optimal policy for the MDP.

The state space S of the DRL model defined in Eq. (3)
contains the availability of resources of the MEC nodes in a
MEC system. The user sets up the number of nodes per MEC
system before the model training. Therefore, the size of the
state space array is the availability of storage, CPU, and RAM
resources of the MEC system.

S = (CST , CRAM , CCPU ) (3)

where CST , CRAM and CCPU define the remaining storage,
RAM, and CPU of all nodes.

The action space A is defined as the set of nodes in the
MEC system, i.e., A = N . The action associated with each
request, a, represents the node where the request is allocated.
The reward function in Eq. (4) is divided into three options.
In the first option, a positive reward is provided if the node
can cope with all the requirements and is not on standby. A
higher normalized value of x corresponds to a lower resource
capacity at the node. Then, the increasing exponential function
boosts nodes with less availability ensuring the minimization
of active nodes. The second option is a negative reward for
placement decisions in a full node that cannot meet the re-
quirements, to discourage such allocations. The corresponding
x normalization guarantees a negative value if at least one of
the resources cannot be satisfied, the associated exponential
function acts as a negative amplified penalty. Similarly, in the
third option, we wish to deter requests from being allocated
to an idle node while non-idle nodes with available capacity
exist. The reward will be 0 in that case.

Let max(Ci
n) and Ci

n be the maximum initial capacity and
the current capacity of the node n according to the resource
i ∈ b, being b = {ST,RAM,CPU}, respectively. Given a
request r demanding Di

r resources ∀i ∈ b, we define the
reward associated with an action a = n, wn as:

wn =


10 · 2x − 1 if all Ci

n > Di
r ; x =

∑
∀i∈b

max(Ci
n)−Ci

n
max(Ci

n)

10 · (2x − 1) if any Di
r > Ci

n; x =
∑
∀i∈b

(
Ci

n−Di
r

max(Ci
n)

− 1
)

0 if Ci
n = max(Ci

n) ∀i ∈ b.
(4)

Distribution enables parallelization of DRL models, making
it suitable for scenarios with independent data management

across domains. The architecture described in Section III ben-
efits from distributed RL/DRL algorithms, allowing efficient
learning and multitasking. Our DDRL algorithm adopts the
ApeX approach [11], with multiple actors collecting diverse
data sets from distinct MEC system environments. ApeX in-
cludes the concept of distributed prioritized experience replay
owed to, intuitively, some experiences can contribute more to
the agent’s learning than others’ experiences.

V. PERFORMANCE EVALUATION

A. Simulation Setup

This work uses the Simu5G simulator [2] for performance
evaluation, an open-source framework for 5G networks that
supports MEC applications onboarding. We integrate Simu5G
with an API REST on the host machine to enable real-time
information exchange between the simulation environment and
Python libraries, facilitating data access for predictions and
result analysis. The MEC Orchestrator relies on an API REST
server and a Python framework to decide on application instan-
tiation on MEC nodes with the trained ML model. Although
Simu5G enables the design of MEC scenarios comprising a
MEC Orchestrator and several MEC nodes, it does not support
communication between MEC Orchestrators. In this work, we
have extended Simu5G to include the interface described in
Section III, which facilitates communication between multiple
MEC Orchestrators and enables the exchange of parameters
of the DDRL workers during training.

B. Methodology

The DDRL algorithm is tested in diverse simulation sce-
narios, evaluating its performance as the number of nodes
and MEC systems increases. The scenarios consist of inter-
connected MEC systems managed by MEC Orchestrators. Or-
chestrators share model parameters during training to optimize
worker models. Workers use shared parameters for re-training
and performance improvement. While nodes within each MEC
system have the same computational capabilities, they differ
across MEC systems.

The evaluation involves episodes with new application
arrivals. Each UE instantiates an application with random
storage (512MB to 32GB), RAM (512MB to 4GB), and CPU
(1 vCPU to 4 vCPU) capacity requirements. The application
generation follows a Poisson distribution with an arrival rate
of 15 apps/s, taking as reference a vehicular safety use case
in [12]. The simulation ends when all applications are instan-
tiated, or MEC node capacity is reached, whichever happens
first. The evaluation is performed by varying the number of
nodes in 2 MEC systems (4, 8, 12, and 16) with 50 applications
to assess performance as nodes increase and by expanding
to 4 and 6 MEC systems, each with 4 nodes and using 50
applications as input.

C. Performance Results

During training and inference, each model worker is placed
in a MEC system environment with initial capacities specified
by different vendors. In the testing phase, all worker models



(a) Accuracy in MEC System 1. (b) Accuracy in MEC System 2.

Fig. 3. Accuracy for different numbers of nodes per MEC system with 2
MEC systems and 50 applications.

(a) Accuracy for 4 MEC systems. (b) Accuracy for 6 MEC systems.

Fig. 4. Accuracy for different number of MEC systems with 4 Nodes per
MEC system and 50 applications.

within each MEC system are exposed to the same environment
for inference, evaluating their performance with unseen initial
capacities. Each MEC system’s DRL model independently de-
termines the node for application allocation without knowledge
exchange between MEC orchestrators.

Accuracy is assessed to measure the probability of the
model predicting the action associated with the highest reward
value among available nodes to meet the objective of minimiz-
ing the number of active nodes. Figure 3 depicts the accuracy
results for the scenario with 2 MEC systems and an increasing
number of nodes (ranging from 4 to 16). Note that the total
number of applications arriving in the system is fixed at 50. To
ensure statistical validity, each specific configuration is tested
100 times, including a 95% confidence interval. As the number
of nodes increases, the average accuracy remains consistent.
However, there is a slightly higher likelihood of obtaining
accuracy values below the average. This is because the system
may opt to allocate an application to the next node when
the current one reaches its capacity. In such cases, if a new
application is placed on the next node instead of the previous
node with available space, it does not contribute positively
to accuracy. However, this event does not significantly affect
system performance, as accuracy consistently remains above
97% for all cases. The accuracy results when increasing the
number of MEC systems for 4 and 6 are presented in Fig. 4.
As the number of MEC systems increases, the algorithm
requires more processing, and synchronization failures may
occur, leading to slightly lower accuracy values. However, the
decrease in the median accuracy is negligible compared to the
results shown for the same number of nodes in Fig. 3.

Regarding ILP, the algorithm accuracy is always 100% for
scenarios considering 1 to 16 MEC systems and 2, 4, 8, 12,
or 16 nodes for each one with different application request
arrivals. Combinatorial optimization problems solved by ILP

are generally known to be NP-hard problems, making them
challenging for online applications due to high computational
time. Using the same DDRL configuration parameters, the
average computing time to place one application is tens of ms;
meanwhile, the DDRL algorithm achieves an average time of
0.2 ms, outperforming the ILP technique.

VI. CONCLUSIONS AND FUTURE WORK

We propose an approach for MEC application placement in
distributed environments managed by multiple orchestrators.
Our method aims to minimize active nodes while ensuring
SLA compliance and system performance. The approach
aligns with ETSI MEC reference architecture and seamlessly
incorporates a DDRL model with ApeX system to address
the problem. Simu5G is used for the evaluation, extended to
support standard control interface across orchestrators. Results
show the model’s adaptability to varying initial resource
availability, achieving accurate application placement. Future
research will explore the impact of volatile infrastructures.

ACKNOWLEDGEMENTS

This work has been performed in the framework of the EU’s
H2020 project AI@EDGE (101015922). The authors would
also like to acknowledge the CERCA Programme/Generalitat
de Catalunya, the EU ”NextGenerationEU/PRTR”, MCIN, and
AEI (Spain) under project IJC2020-043058-I.

REFERENCES

[1] F. A. Salaht, F. Desprez, and A. Lebre, “An Overview of Service
Placement Problem in Fog and Edge Computing,” ACM Computing
Surveys, vol. 53, no. 3, pp. 1–35, Jun. 2020.

[2] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5G–An
OMNeT++ Library for End-to-End Performance Evaluation of 5G
Networks,” IEEE Access, vol. 8, pp. 181 176–181 191, Sep. 2020.

[3] T. Bahreini and D. Grosu, “Efficient Algorithms for Multi-Component
Application Placement in Mobile Edge Computing,” IEEE Transactions
on Cloud Computing, vol. 10, no. 4, pp. 2550 – 2563, Oct. 2022.

[4] N.-E.-H. Yellas, B. Addis, R. Riggio, and S. Secci, “Function placement
and acceleration for in-network federated learning services,” in Proc. of
CNSM, Thessaloniki, Greece, Nov. 2022, pp. 212–218.

[5] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 2, pp. 292–303, Feb. 2020.

[6] R. Eyckerman, P. Reiter, S. Latre, J. Marquez-Barja, and P. Hellinckx,
“Application Placement in Fog Environments using Multi-Objective
Reinforcement Learning with Maximum Reward Formulation,” in Proc.
of IEEE NOMS, Budapest, Hungary, Apr. 2022, pp. 1–6.

[7] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A Distributed Deep
Reinforcement Learning Technique for Application Placement in Edge
and Fog Computing Environments,” in arXiv:2110.12415, Oct. 2021.

[8] ETSI, “Multi-access Edge Computing (MEC); Framework and Refer-
ence Architecture,” European Telecommunications Standards Institute,
Group Specification (GS) MEC 003, Mar. 2022, version 3.1.1.

[9] B. Brik, P. A. Frangoudis, and A. Ksentini, “Service-Oriented MEC
Applications Placement in a Federated Edge Cloud Architecture,” in
Proc. of IEEE ICC, Dublin, Ireland, Jun. 2020, pp. 1–6.

[10] ETSI, “Multi-access Edge Computing (MEC); Federation enablement
APIs,” European Telecommunications Standards Institute, Group Spec-
ification (GS) MEC 040, Feb. 2023, version 3.1.1.

[11] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, and D. Silver, “Distributed Prioritized Experience Replay,” in
arXiv:1803.00933, Mar. 2018.

[12] 5GPPP, “5G PPP use cases and performance evaluation mod-
els,” https://5gppp.eu/wp-content/uploads/2014/02/5GPPPusecasesand-
performanceevaluationmodeling v1.0.pdf, Accessed on 09.05.2023.


